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ABSTRACT: In this study, geometric modeling techniques and their application to ship modeling and design are presented. 
Traditionally the hull shape is defined by using curves called the lines and various necessary computations are performed 
based on the discrete points obtained from the lines. However, some applications find difficulty in using the lines such as 
seakeeping analysis, which requires the computation of wetted part that is changing dynamically over time. To overcome such a 
problem and increase accuracy and efficiency in computation, two essential geometric modeling techniques, surface modeling 
and surface-to-surface intersection, are introduced and their application to ship modeling and analysis including hydrostatic 
computation, slamming and seakeeping analyses is presented.   
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INTRODUCTION 
 

Traditionally the hull form of a ship is defined by curves 
in three planes, each of which is called the body, sheer, and 
half breadth plans. A set of these drawings is called the lines, 
which is the starting point of ship manufacturing (See Fig. 1). 

 

 
 

Fig. 1 The illustration of the lines (Tosaka, 2001). 
 

 The lines consist of curves and each curve defines the 
shape of a ship. From the body plan, the shape at each station 
or frame is defined. The shape of the hull at each water line is 
given in the half breadth plan and the shape of the hull at 
fixed distance from the centerline, also called the buttock 
lines, is defined in the sheer plan. All the calculation and 
design work is performed with the lines.     

The intersection points of the curves are computed from 
the lines, which are called the offset data of a hull shape. The 
offset data are arranged in a table, called an offset table, 
which is the usual way to deliver the shape of the hull 
because curves drawn in the lines cannot be extracted in an 
exact manner. Since the offset points are the discrete points 
obtained from the curves, they inevitably lose shape 
information during the offset generation. This means that it 
might be possible, if it does not happen frequently, to obtain 
different lines even from the same offset points.  

To overcome this problem, various CAD systems such as 
Tribon, which support lines creation using various 
mathematical curve definitions, were used. These systems 
can deliver curves directly without generating offset points to 
the subsequent processes. The use of such systems is 
considered as an innovation in the ship design. However, the 
way of defining the hull shape using curves has not been 
changed and the process of the lines generation, that was 
done manually, has been partly automated using the systems.  

The main issue in defining a hull shape is that the hull 
shape can be exactly given only by using surfaces, not curves, 
which only provide shape information at specific locations. 
The regions that curves are not defined need to be estimated 
from the given curves. This means that the use of curves has 
the limitation of representing the hull shape accurately. To 
address such a problem, a set of new CAD systems which 
support modeling of a ship using surfaces are introduced with 
the help of software and hardware development. The CAD 
systems such as CATIA can generate surface models for the hull 
shape and process them for calculation, simulation, detailed 
design and manufacturing. In fact, they have evolved to provide 
a solution which can take care of the entire shipbuilding. 
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Surface modeling of a shape is a difficult process 
requiring a wide range of geometric modeling techniques. 
However, after obtaining surface models, a variety of 
computation and design steps can be done efficiently and 
accurately since shape information at any point on the surface 
can be obtained without an additional estimation step from 
the curves. For example, one can extract the shape of a ship 
at any position directly. In addition hydrostatic and dynamic 
computation can be performed efficiently. Such computation 
is mostly carried out using meshes that approximately define 
the hull shape and the meshes can be more efficiently 
obtained from the surface models than curve models.  

Among the various geometric processes for surface 
models, computation of surface-to-surface intersection (SSI) 
is the most difficult but an essential job and finds many 
applications in ship design. For example, extracting lines 
from the surface models can be easily done by intersecting 
the hull shape with various planes and computing the 
intersection curves. Similarly, the draft line of a ship at a 
certain free surface can be obtained by computing the 
intersection of the hull and the free surface.  

In this paper, a brief review of two techniques, surface 
modeling and SSI computation, is presented to give an 
insight on the importance of the techniques in the ship design 
phase and a couple of examples are introduced which can be 
done efficiently by using the surface model of a ship hull and 
SSI computation with its theory. Application of SSI 
computation to hydrostatic calculation, slamming and 
seakeeping analyses is introduced. The hydrostatic 
computation requires the exact shape information and the 
wetted part of the hull floating on still water. Slamming 
needs the body shape at an arbitrary position. Seakeeping 
receives meshes of the wetted part of the ship hull given 
various free surface conditions.  

The paper is structured as follows. Geometric operations 
for surface modeling and SSI computation are introduced and 
how such operations are used in the computations mentioned 
above. Examples are followed and this paper concludes with 
future work. 

 
 
 

GEOMETRIC MODELING 
 
In this section, the theoretical background of two 

essential geometric operations: surface modeling and SSI 
computation are introduced.  

 
Surface Modeling 
 

A surface can be represented using implicit, explicit and 
parametric form. Among them, the parametric representation 
is mainly used in the surface modeling since it provides 
computational advantages and geometrically intuitive ways 
for handling the shape. In particular one typical parametric 
representation, NURBS (Non-Uniform Rational B-Spline), is 
the most popular. It is also accepted as the industrial standard 
in representing surfaces. A NURBS surface is given as 
follows (Patrikalakis and Maekawa, 2001): 
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Here, pij is the control points, Ni,m(u) and Nj,n(v) the B-spline 
basis functions of order m and n, nu and nv the number of 
control points. This surface is defined over the knot vectors 
Tu and Tv.  

There exist two ways to generate a surface of the desired 
shape. First, one surface having a simple shape is given. Then 
the control points are adjusted to change the surface shape 
until the desired shape is obtained. The second approach is to 
find a surface which approximates or interpolates a set of 
points or a family of curves that containing part of the desired 
shape. Then this surface is adjusted to become the desired 
shape. This way of modeling requires estimating parameters 
for given points or curves and solving a system of equations 
to determine the control points, which are not an easy process. 
However, in the general hull form design, the existing shape 
is taken and changed to satisfy new design requirements. 
Therefore, the latter method is usually preferred since 
reference data are available for modeling in ship design.  

Suppose that a set of points rk (k=1…nk) are given. These 
points define the shape of interest. The parameter values for 
each point rk need to be estimated first. There are several 
methods for estimating parameters from points and among 
them the chord length parametrization is mostly used. 
Assume that the parameter value for rk is given as uk and vk 
and knot vectors Tu and Tv for each parametric direction are 
provided. Then for each point, Eq. (2) should hold. 
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Here pij are the unknowns. Depending on the modeling 
strategy, a couple of constraints such as enforcing the 
boundary points, lines, etc. could be considered. Eq. 2 can be 
easily solved by using the singular value decomposition 
(Press et al., 1988).  

After obtaining the control points, the surface either 
interpolates the given points if the number of points is equal 
to the number of control points or approximates them if the 
number of points is larger than the number of the unknowns. 
If the latter is the case, then an additional step could be 
employed to reduce errors in approximation: parameter 
correction. Parameter correction is a way to adjust parameter 
values that have been estimated for each point to reduce the 
approximating error. A method given in Hoschek and Lasser 
(1993) may be used for this purpose. When points with 
parametric values are approximated, a generated surface does 
not pass the given points in most cases. Therefore, there exist 
errors between the points on the surface at the estimated 
parameters u and v and the given points corresponding to the 
u and v. Suppose that ri is an input point and r(ui,vi) is the 
point on the surface using the parameter values ui and vi 
assigned to ri. Then the parameter values ui and vi are revised 
to reduce the error between ri and r(ui,vi). This process is 
based on the fact that the projection point of ri onto r(u,v) 
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yields the minimum error, which is formulated as an 
iterative process, see Hoschek and Lasser (1993). 
Optionally, a direct error reduction step can be considered. 
This step computes the error between the points and the 
approximated surface. Then the amounts of adjustment for 
each control point are computed and added to the current 
control points to reduce error. An example of surface 
modeling and error reduction is given in Fig. 2. As shown 
in the figure, after error reduction the error between the 
points and the surface has decreased. 

 

 
(a) Fitting result without error reduction. 

 

 
(b) Fitting result after error reduction. 

 

Fig. 2 An example of surface modeling from a set of points.  
 

Modeling of Hull Shape 
 
Using the surface modeling technique, a ship hull can be 

defined with surfaces. In general it is not possible to define 
the entire hull shape with one surface patch. So, the hull is 
subdivided into several regions in order to make the 
complicated shape smaller but simpler and each region is 
approximated using a surface patch. An example of the 
surface model of a ship is given in Fig. 3. The ship hull in 
this example is constructed by using five patches of degree 3 
in u and v directions. The errors before and after the error 
minimization step are given in Table 1. Here, the error is the 
maximum distance from the input points to the approximated 
surface. As shown in the table, the error reduction step 
minimizes errors between the given points and the 
approximated surfaces. 

Table 1 Error reduction for surface modeling. 

Patch No. Before 
Parameter 
correction 

Control 
point 

adjustment 
1 154.53 8.74 0.14 

2 99.12 3.31 0.08 

3 106.98 4.49 0.06 

4 104.98 3.80 0.07 

5 214.09 9.00 0.27 
 

The generated patches are connected with C0 continuity. 
This continuity can be achieved by using the common 
boundary for the two consecutive patches. Higher 
continuity conditions such as C1 and C2 can be considered. 
However, such continuity conditions are no longer taken 
into account when the surface patches are discretized into 
panels or meshes for various numerical computations, 
which in general require C0 continuity between consecutive 
elements. 

 
Surface-to-Surface Intersection 

 
Consider two parametric surfaces r1(u,v) and r2(σ,t) with 

0 ≤ u,v,σ,t ≤ 1. If the two surfaces intersect, Eq. 3 should hold 
at the intersection. 
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Then, SSI computation is reduced to find the parametric 
values u, v, σ and t which satisfy Eq. 3. There exist three 
major ways for SSI computation: lattice method (Rossignac 
and Requicha, 1987), subdivision method (Lane and 
Riesenfeld, 1981) and tracing method (Bajaj et al., 1988; 
Barnhill and Kersey, 1990).  

 

 
 

Fig. 3 An example of the surface model of a ship. 
 

Lattice Method 
It transforms surface-to-surface intersection to iso-

parametric curve-to-surface intersection. From one of the 
intersecting surfaces, a set of iso-parametric curves is 
obtained each of which is taken for computing intersection 
with the other surface. Then the intersection points are 
connected to form the intersection between the two surfaces. 
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This method, however, has a drawback that depending on the 
resolution of the iso-parametric curves, small intersection 
features could be undetected. 

 
Subdivision Method 

It involves recursive subdivision of the surfaces and 
checks if the subdivided regions from the surfaces contain 
intersection or not. The subdivision continues while 
eliminating those regions which do not contain intersection 
until the size of the subdivided regions becomes less than the 
user provided tolerance. Figure 4 illustrates how subdivision 
method works. In this figure the shaded region indicate that 
they contain intersection. 

 

 
Fig. 4 A schematic of subdivision method (Patrikalakis and 
Maekawa, 2001). 
 

The mathematical way to determine if a region does not 
contain intersection is to use interval arithmetic (Moore, 1966) 
which is applied to Eq. (3). Namely, each subdivided region is 
represented using interval values. Then using the interval 
values, Eq. (3) is evaluated in interval arithmetic. If the 
resulting interval does not contain zero, then it is determined to 
have no intersection and is discarded. This method can find 
every intersection feature. However, after the computation, 
the subdivided regions should be arranged to form 
intersection and the number of subdivided regions could 
explode depending on the termination tolerance size and the 
pattern of intersection (tangential or near tangential 
intersections), which may lead to increased processing time. 
Nevertheless, due to its robustness, easy concept and 
implementation, this method is frequently used in practice.  
 
Tracing Method 

It generates a sequence of intersection points by solving a 
system of nonlinear ordinary differential equations that are 
formulated based on Eq. (3). It requires identifying the 
starting and ending points of each intersection segment as 
well as various critical and singular points. This identification 
step is called the topological configuration. Then, the 
governing differential equations are solved to trace each 
intersection curve numerically. This method efficiently 
computes the intersection. However, the topological 

configuration step which sometimes requires a lot of 
computation should be preceded and for a tangential 
intersection case, a different formulation needs to be solved, 
which adds extra complexity to the method. For details, see 
(Patrikalakis and Maekawa, 2001).   

Among the three methods, the subdivision method is 
employed in the examples in this paper since its 
implementation is straightforward and the method can 
efficiently handle complex intersection cases such as the 
intersection between the hull shape and free surface. The 
subdivision method is designed to deal with intersections of 
any type of surfaces from planes to free-form surfaces in one 
algorithm with no modification. Therefore, it can be applied 
for various applications easily.  
 
 
 
HYDROSTATIC CALCULATION 
 

Hydrostatic calculation is a fundamental step in ship 
design. In particular, values from the hydrostatic computation 
will affect the major performance as well as the safety of the 
ship hull. Therefore, accurate computation of such values is 
the most critical. So far computation has been done from the 
lines. Data points are obtained from the lines and then 
various numerical integration algorithms such as trapezoidal 
method, Simpson rule method, etc. are employed for 
calculating essential values such as displacement, LCB, etc. 
However, it would be obvious that such computation can be 
accurately and efficiently performed if the hull shape is given 
in surfaces. First, the wetted part of the hull shape is 
computed. This process is done by intersecting the hull shape 
with planes positioned at the design and ballast drafts. Also, 
various trim conditions are also considered in the similar 
manner. Namely, the hull is intersected with a sloped plane. 
Then the part below the intersection is the wetted one and 
only that portion is taken for computation.  

 
 
 

SLAMMING COMPUTATION 
 
Slamming is the impact on the hull structure against the 

water and the estimation of the slamming force is very 
important for structure design. Given a hull shape, the 
slamming force can be estimated by several methods: a 
method using Von Karman theory (Von Karman, 1929), 
Wagner’s method (Wagner, 1932), etc. and most of them 
require the body profile at an arbitrary position. For this 
computation, using the lines needs additional work to 
estimate values if that position is between two frame lines. 
However, extracting the body shape can be easily done by 
using the surface model of a hull shape. The hull model is 
intersected with a vertical plane which is parallel to the 
body plan and located at the desired position. The 
intersection curve becomes the body profile. Fig. 5 shows 
the body plan with five computed profiles which are drawn 
in thick curves and Fig. 6 presents another view of the 
same result. 
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Fig. 5 A body plan showing the profiles at five arbitrary 
positions (Blue curves: boundary curves of each surface 
patch. Thick curve: computed profiles). 
  

 
Fig. 6 The computed profiles given as thick curves. 
 
 
 
SEAKEEPING ANALYSIS 

 
Seakeeping analysis is a process of estimating fluid 

forces acting on the ship hull for the design of the ship 
structure and the shape. This analysis requires triangular or 
quadrilateral meshes of the wetted part of the ship, which 
should be computed efficiently and accurately given the ship 
motion and wave conditions. For this computation, first, the 
intersection between the free surface with/without waves and 
the shape of the hull is computed and the parts below the free 
surface are discretized into meshes which are then used as 
input for seakeeping analysis.  

Seakeeping analysis can be performed in different ways. 
Among them, in this work, Rankin panel method is 
considered. In this analysis method, there exist three types of 
analysis depending on the degree of nonlinearity (Kim and 
Kim, 2009): linear, weakly nonlinear and weak-scatterer. The 
linear analysis needs panels for the wetted part which is 
obtained when the hull floats on the still water. This 
condition is easily obtained by intersecting the plane of the 
still water with the hull shape and taking the part below the 
intersection. As shown in Fig. 7, the wetted part is computed. 
Fig. 8 shows the blown-up image of the bow of the ship and 

Fig. 9 presents an example of panels of the wetted part 
including the free surface, which would be given to the linear 
analysis.  

 

 
 

Fig. 7 The wetted part of a ship hull in dark color; The user 
selected reference stations during hull modeling as yellow 
curves. 
 

 
 

Fig. 8 The magnified bow of the wetted part (Each wetted 
part represented in surfaces and shown using panels; 
Waterlines as red curves).  
 

 
 

Fig. 9 The generated panels for seakeeping analysis (Ko et al., 
2010).  



182 Inter J Nav Archit Oc Engng (2010) 2:177~184
 
 

 

Fig. 10 shows an example of a complicated hull shape 
and the computed intersection between the hull and the free 
surface given in the thick curve. This example is a right skeg 
part of a twin-skeg vessel. This figure demonstrates that it is 
necessary to have a surface hull model for the efficient and 
accurate computation of the wetted part for seakeeping 
analysis. 

 

 
 

Fig. 10 The computed intersection curve between the hull and  
free water (The intersection between the hull and free surface 
as magenta curves). 
 

The weakly nonlinear method requires either the panels 
for the entire hull shape or the wetted part at each 
computation step under various sea conditions depending 
on the detailed approach taken in the actual implementation. 
The latter case is also applied to the weak-scatterer analysis 
method. In this case, the motion of the ship changes as well 
as the waves near the ship and the wetted part of the hull 
changes accordingly at each computation step. For such 
analyses, the wetted part should be computed accurately 
and efficiently, which is almost impossible only by using 
the lines. However, when the hull shape is given in 
surfaces, the wetted part computation can be easily done.  

 

 
 

Fig. 11 An instance of generated panels with free surface (Ko 
et al., 2010). 

The hull is translated and rotated to reflect the motion of the 
ship and the waves are given as a combination of 
mathematical functions. Then the intersection between the 
hull shape and the free surface representing the waves is 
computed. Fig. 11 shows an example of generated panels 
given a ship hull in waves. As demonstrated in the figure, the 
wetted part has been accurately obtained following the shape 
of the waves on the hull.  
 

 
 
CONCLUSIONS 
 

Geometric modeling is an essential tool for handling a 
hull shape and provides useful operations for various 
purposes. Among them, surface modeling and surface-to-
surface computation techniques are introduced and their 
application to ship hull design and analysis is presented. 
Since the hull shape is given as surfaces as oppose to 
curves in the lines drawings, various complicated 
computations can be performed accurately and efficiently. 
In particular seakeeping analysis is a primary beneficiary 
of this approach.  

As more and more novel design criteria are considered, 
the hull shape becomes complicated. For example, twin-
skeg, a moonpool or various appendages make the hull 
shape very complex to handle by using the lines. However, 
the surface model of such shapes, if modeled properly, can 
be efficiently processed for various computations. 
Therefore, the need for surface modeling of a ship hull 
increases. 

Enhancing the surface modeling and SSI computation 
for a novel class of ships with complicated hull form is 
recommended for future work.   
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APPENDIX 
 

Consider two surface patches r1(u,v) (0≤u, v≤1) and 
r2(σ,t) (0≤σ, t≤1) which intersect with each other. Then the 
three methods computing intersection are introduced. For 
more details, see (Patrikalakis and Maekawa, 2001). 
 
Lattice Method 

The essence of the lattice method is to transform the 
surface-to-surface intersection problem into a set of 
intersection problems between a surface and a curve. Here, 
the curve is an iso-parametric curve obtained from an 
intersecting surface. Assume that cj(t) = r2(σj,t), σj is a 
constant. Then the intersection problem becomes finding the 
roots of the following equation. 
 
r1(u,v) = cj(t) for σ=σj.                             (4) 
 

This equation has three equations and three unknowns. 
So it can be easily solved by using Newton’s method. By 
changing σ value, a set of intersection points on r1(u,v) is 
obtained, which are then connected to form an intersection 
curve.  
 
Subdivision Method 

The pseudo-code for the subdivision method is as follows. 

 
 
Here, L the list containing the intersection points. TOL is 
the user-defined tolerance. The input of this code is r1, r2, ul, 
uh, vl and vh. Line 2 checks if the given domain defined by 
r1(u,v) (ul,≤u≤uh, vl≤v≤vh) intersects r2(σ,t). If no 
intersection exists, the program returns. Otherwise, the 
process moves to Line 5. If the size is smaller than the 
tolerance, then the center of the domain is added to the list 
L. Otherwise, each subdivided domain is tested for 
intersection in a recursive manner. Once the program is 
terminated, the intersection points in the list L are obtained. 
Line 2 can be implemented by using interval arithmetic. 
Namely, E(u,v,σ,t) = |r1(u,v) - r2(σ,t)| is evaluated in interval 
arithmetic. If the resulting interval contains zero, then both 
surfaces intersect.  

 
Tracing Method 

The intersection of r1(u,v) and r2(σ,t) is the root of the 
equation r1(u,v) = r2(σ,t), which contains three equations 
and four unknowns. So it cannot be solved by an algebraic 
method. However, by introducing the arc length 
parametrization, a system of ODEs that are satisfied on the 
intersection is formulated as follows: 
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where s is the arc-length parameter, the subscripts indicate 



184 Inter J Nav Archit Oc Engng (2010) 2:177~184
 
 

 

partial derivatives, Det denotes the determinant, and  
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The normal vectors for the surfaces are obtained at a 
point on the intersection. The vector h is the tangent 
direction of the intersection curve at each point that is used 
as the marching direction of tracing. It is computed from the 
intersecting surfaces. However, depending on the 
intersection type, it needs to be computed differently. For a 
transversal intersection case where the normal vectors are 
not parallel, it can be computed by using Equation (10). 
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However, when two surfaces are intersecting tangentially, 
the two normal vectors are parallel to each other, namely, 
the tangent planes of both surfaces at the intersection 
coincide. In this case, a unique tangent vector h cannot be 
determined using Equation (10).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

So, higher order derivative terms should be used to 
determine h. By using the fact that at the tangential 
intersection the normal curvatures are the same, a quadratic 
equation is derived as follows: 
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where b11, b12 and b22 are functions of the first and the 

second fundamental form coefficients of the given 
surfaces. 
 
If b11 ≠ 0,  
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and if b11 = 0 and b22 ≠ 0, 
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