DOI QR코드

DOI QR Code

Investigation of Self-assembly Structure and Properties of a Novel Designed Lego-type Peptide with Double Amphiphilic Surfaces

  • Wang, Liang (West China Hospital Nanomedicine Laboratory, Center for Regenerative Medicine and Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University) ;
  • Zhao, Xiao-Jun (Center for Biomedical Engineering, NE47-379, Massachusetts Institute of Technology)
  • 투고 : 2010.07.22
  • 심사 : 2010.10.19
  • 발행 : 2010.12.20

초록

A typically designed 'Peptide Lego' has two distinct surfaces: a hydrophilic side that contains the complete charge distribution and a hydrophobic side. In this article, we describe the fabrication of a unique lego-type peptide with the AEAEYAKAK sequence. The novel peptide with double amphiphilic surfaces is different from typical peptides due to special arrangement of the residues. The results of CD, FT-IR, AFM and DLS demonstrate that the peptide with the random coil characteristic was able to form stable nanostructures that were mediated by non-covalent interactions in an aqueous solution. The data further indicated that despite its different structure, the peptide was able to undergo self-assembly similar to a typical peptide. In addition, the use of hydrophobic pyrene as a model allowed the peptide to provide a new type of potential nanomaterial for drug delivery. These efforts collectively open up a new direction in the fabrication of nanomaterials that are more perfect and versatile.

키워드

참고문헌

  1. Zhang, S.; Yan, L.; Altman, M.; Lassle, M.; Nugent, H.; Frankel, F.; Lauffenburger, D. A.; Whitesides, G. M.; Rich, A. Biomaterials 1999, 20, 13.
  2. Vauthey, S.; Santoso, S.; Gong, H.; Watson, N.; Zhang, S. Proc.Natl. Acad. Sci. USA 2002, 99, 8.
  3. Zhang, S. Nature Biotechnology 2003, 21, 10.
  4. Zhao, X.; Zhang, S. Trends Biotechnol. 2004, 22, 9.
  5. Ruan, L.; Zhang, H.; Luo, H.; Liu, J.; Tang, F.; Shi, Y.-K.; Zhao, X. Proc. Natl. Acad. Sci. USA 2009, 106, 13. https://doi.org/10.1073/pnas.0812917106
  6. Zhou, Q.; Lin, J.; Wang, J.; Li, F.; Tang, F.; Zhao, X. Progress in Natural Science 2009, 19, 11.
  7. Song, H.; Zhang, L.; Zhao, X. Macromol. Biosci. 2010, 10, 1.
  8. Zhao, X.; Nagai, Y.; Reeves, P. J.; Kiley, P.; Zhang, L.; Khorana, H. G. Proc. Natl. Acad. Sci. USA 2006, 103, 47.
  9. Segers, V. F. M.; Lee, R. T. Drug Discovery Today 2007, 12,
  10. Zhang, S.; Lockshin, C.; Herbert, A.; Winter, E.; Rich, A. EMBO J. 1992, 11, 10.
  11. Yokoi, H.; Kinoshita, T.; Zhang, S. Proc. Natl. Acad. Sci. USA 2005, 102, 24. https://doi.org/10.1073/pnas.0408498102
  12. Zhang, S.; Gelain, F.; Zhao, X. Semin. Cancer Biol. 2005, 15, 5.
  13. Schneider, A.; Garlick, J. A.; Egles, C. PLoS ONE. 2008, 3, 1.
  14. Luo, Z.; Zhao, X.; Zhang, S. Macromol. Biosci. 2008, 8, 8.
  15. Ruan, L.-P.; Luo, H.-L.; Zhang, H.-Y.; Zhao, X. Macromolecular Research 2009, 17, 8. https://doi.org/10.1007/BF03218594
  16. Orbach, R.; Adler-Abramovich, L.; Zigerson, S.; Mironi-Harpaz, I.; Seliktar, D.; Gazit, E. Biomacromolecules 2009, 10, 9. https://doi.org/10.1021/bm801103c
  17. Fung, S. Y.; Yang, H.; Chen, P. Colloids and Surfaces B: Biointerfaces 2007, 55, 2.
  18. Zhang, S.; Zhao, X. Journal of Materials Chemistry 2004, 14, 14.
  19. Kelly, S. M.; Jess, T. J.; Price, N. C. Biochimica et Biophysica Acta 2005, 1751, 2. https://doi.org/10.1016/j.bbapap.2004.10.010
  20. Jackson, M.; Mantsch, H. H. Critical Reviews in Biochemistry and Molecular Biology 1995, 30, 2.
  21. Qiu, F.; Chen, Y.; Zhao, X. J. Colloid Interface Sci. 2009, 336, 2.
  22. Jalili, N.; Laxminarayana, K. Mechatronics 2004, 14, 8.
  23. Keyes-Baig, C.; Duhamel, J.; Fung, S.-Y.; Bezaire, J.; Chen, P. J.Amer. Chem. Soc. 2004, 126, 24. https://doi.org/10.1021/ja037716p
  24. Li, F.; Wang, J.; Tang, F.; Lin, J.; Zhang, Y.; Zhang, E.-Y.; Wei, C.; Shi, Y.-K.; Zhao, X. J. Nanosci. Nanotechnol. 2009, 9, 2.