
Copyright © The Korean Space Science Society 407 http://janss.kr pISSN: 2093-5587 eISSN: 2093-1409

Technical Paper
J. Astron. Space Sci. 27(4), 407-412 (2010)
DOI: 10.5140/JASS.2010.27.4.407

Received Sep 10, 2010 Revised Oct 14, 2010 Accepted Nov 22, 2010
†Corresponding Author

E-mail: chkoo@kari.re.kr
Tel: +82-42-860-2145 Fax: +82-42-860-2007

This is an Open Access article distributed under the terms of the
Creative Commons Attribution Non-Commercial License (http://cre-
ativecommons.org/licenses/by-nc/3.0/) which permits unrestricted
non-commercial use, distribution, and reproduction in any medium,
provided the original work is properly cited.

SMI Compatible Simulation Scheduler Design for Reuse of Model
Complying with SMP Standard

Cheol-Hea Koo1†, Hoon-Hee Lee2, and Yee-Jin Cheon1

1Satellite Flight Software Department, Satellite Technology Division, Korea Aerospace Research Institute,
 Daejeon 305-333 Korea
2Geostationary Satellite Operation Department, Satellite Technology Division, Korea Aerospace Research Institute,
 Daejeon 305-333 Korea

Software reusability is one of key factors which impacts cost and schedule on a software development project. It is very

crucial also in satellite simulator development since there are many commercial simulator models related to satellite

and dynamics. If these models can be used in another simulator platform, great deal of confidence and cost/sched-

ule reduction would be achieved. Simulation model portability (SMP) is maintained by European Space Agency and

many models compatible with SMP/simulation model interface (SMI) are available. Korea Aerospace Research Institute

(KARI) is developing hardware abstraction layer (HAL) supported satellite simulator to verify on-board software of sat-

ellite. From above reasons, KARI wants to port these SMI compatible models to the HAL supported satellite simulator.

To port these SMI compatible models to the HAL supported satellite simulator, simulation scheduler is preliminary

designed according to the SMI standard.

Keywords: simulation model portability, simulation model interface, simulated software test bench, simSTB, scheduler,
simulator

1. INTRODUCTION

Satellite simulation environment has very important

role during software and system verification and testing

phase since it is cost effective way to do it. The usage of

simulator on software testing and system verification is

being increased continuously. For example, in communi-

cation, ocean, and meteorological satellite (COMS) pro-

gram, launched at 27 June 2010, various simulators were

used at software and system verification at each phase of

software testing, satellite dynamics verification, satellite

engineering test bed test, and even satellite integration

test phase. In these simulators, various simulation mod-

els are integrated inside for their specific simulation ca-

pability. For example, from telemetry and telecommand

model as on-board computer component to sensor and

dynamics model as satellite analysis model, almost ev-

erything on satellite can be modeled.

It should be noted that purchasing these models which

are already proven may be the most effective way to de-

velopment simulator rather than starting with scratch

from everything, e.g. simulator platform, simulator/man

interface, simulator/model interface, and finally model

itself. To use pre-developed simulator model, simulator/

model interface is very important to maintain the reus-

ability through various simulator platforms.

EuroSim and SIMSAT is widely known as satellite

simulator platform and both are being used by Euro-

pean spacecraft development companies and European

Space Agency (ESA)/European Space Operations Centre

DOI: 10.5140/JASS.2010.27.4.407 408

J. Astron. Space Sci. 27(4), 407-412 (2010)

(ESOC)/European Space Research and Technology Cen-

tre (ESTEC). They are very powerful platform and have

many third parties who provide various simulator mod-

els. VEGA and Terma are examples of these third parties.

Unfortunately, there are cases that another specific

functionality which is not supported by EuroSim or SIM-

SAT, is requested. For example if we need to integrate

several simulators through ethernet or something else,

native function of these simulator platforms is not suf-

ficient to do it since we don't know the detail mechanism

of these simulator platforms.

So, simplified and flexible simulator platform to meet

the specific requirements has been requested frequently

since there are numerous phases and levels on software

and system test/verification of satellite. The numerous

phases and levels bring various functional requirements

about satellite simulator environment.

2. SIMULATION MODEL INTERFACE/SIMULA-
TION MODEL PORTABILITY

Even though new simulator platform is required, ex-

isting simulator models shall be used as much as can

with minimal design or source code change. So interface

between simulator platform and simulator model is re-

quested to maintain consistency of functionality of simu-

lator model when simulator platform is changed.

 Simulation model portability (SMP) is one of the good

candidates of the interface between simulator platform

and simulator model (ESA 2002). SMP is introduced by

ESA and focuses on maintaining the interface consisten-

cy with various simulator platform, various development

languages, and various operating systems. Those envi-

ronments which shall be compatible under SMP would

be summarized as follows:

- Simulator platform: EuroSim, SIMSAT, Rose and etc.

- Development languages: Java, Ada, C/C++, Fortran

- Operating systems: MS Windows, Linux

SMP standard does not describe detail implementa-

tion of the interface, but describes only abstraction inter-

face application programming interface (API) of simula-

tion model interface (SMI).

As depicted in Fig. 1, simulator models are interfaced

with simulation platform through SMI APIs. The dot-

ted line in Fig. 1 represents inside relationship between

models and solid line in Fig. 1 represents interface with

simulator platform via SMI. Through SMI APIs, model

can register its service (function) and data to simulator

model manager as depicted in Fig. 2. Once the services

and data are registered to a simulator platform, the ser-

vices and data can be used by the simulator core func-

tion, e.g. scheduler or javascript as test script from user.

The core function is to manage the simulator periodic/

aperiodic event thanks to scheduler which is composed

of various functions supporting real-time requests.

3. PRELIMINARY DESIGN OF SIMULATION
SCHEDULER

Fig. 1. Simulation model portability architecture (ESA 2002). Fig. 2. Model data transfer (ESA 2002).

409

Cheol-Hea Koo et al. SMI compatible simulation scheduler

http://janss.kr

Simulation scheduler is the most frequently called

function in simulation platform. Scheduler distributes

time resources such as simulation time and processor

emulation time, and manages simulation event. The ba-

sic operation of scheduler is that it remembers simula-

tion event, continues the process of processor emulator

until the shortest event time is elapsed, and then pauses

the processor emulator and jumps the simulation event

handler to service the functionality of event. When

the processing of an event is completed, it returns to a

paused processing of a processor emulator.

To maintain the compatibility to SMI/SMP of existing

simulator models, simulation scheduler is designed to

provide simplified SMI APIs to further simulator model.

This simulation scheduler shall have minimal dependen-

cy with development platform, e.g. operating system and

development tools.

As shown in Fig. 3, scheduler allocates processing

time to each simulation request, e.g., processor emula-

tor and simulation event. The solid dot line means that

this allocation is based on "Soft Real-Time" scheduling

concept and the solid line connecting between scheduler

and hardware abstraction layer (HAL) I/F means that

this allocation is based on "Non Real-Time" scheduling

concept. Fig. 4 represents a schedule as a part of sched-

uler, which is the list of simulation events that happen

in SIMWARE of COMS dynamic satellite simulator soft-

ware. Those events are expected which models will run

and when models will run.

Under "Soft Real-Time" scheduling concept, schedul-

er tries to make the simulation time same with real world

time, i.e., Zulu Time, as close as it can. Scheduler adjusts

the simulation time in order to prevent it from deviating

from Zulu Time too much.

Under "Non Real-Time" scheduling concept, schedul-

er does not manage the simulation time since it is almost Fig. 3. Scheduler interface to processor emulator and event.

Fig. 4. Example of schedule on COMS dynamic satellite simulator software simulator.

DOI: 10.5140/JASS.2010.27.4.407 410

J. Astron. Space Sci. 27(4), 407-412 (2010)

impossible to handle correctly the delay introduced by

HAL I/F. So, scheduler will pause whole simulation time

and wait until a feedback is delivered from HAL I/F.

Table 1. Summary of SMI API related to scheduler.

SMI API name Parameters Comment

SMI
Publish
Service()

Const ObjectID_T
Const ServiceName_t
Const Service_t
ServiceID_t

ObjectID
ServiceName
Service
*ServiceID

Event entry
point

SMI
ExtSchedule
Event()

Const Unsigned64_t
Const Unsigned64_t
Const ObjectID_t
Const ServiceID_t
Const Parameter_t
EventID_t

CycleTime
DeltaTime
ObjectID
ServiceID
*pParameters
*pEventID

Period
Initial delay

SMI
ExtDeleteEvent()

Const EventID_t EventID

SMI: simulation model interface, API: application programming interface.

Simulation model consists of service and data and

these service and data can be published to simulator

platform thanks to SMI APIs like SMIPublishService() API

and SMIPublishData() API. Especially service can be used

by scheduler for the target entry point of event handler.

Scheduled event can be registered by SMIExtSchedu-

leEvent() API with Cycle Time and Delta Time parameters.

So, the event handler published by SMIPublishService()

API can be called periodically or aperiodically if Cycle

Time is assigned or not.

The prototypes of these APIs which are implemented

in current porting are summarized as shown in Table 1.

To hold these schedule information, simple data struc-

ture based on the above parameter lists shown in Table

1 is introduced. And, special data for Remain Time is

added to the data structure. Remain Time designates a

time which is left to an event from current simulation

time. Remain Time is crucial concept since scheduler

works along with processor emulator but with simulator

itself. So, minimal thread collaboration is introduced for

this scheduler design. Only two threads are necessary.

One is for scheduler, and the other is for processor emu-

lator handling. An event which has the shortest Remain

Time is supposed to be called after passing the shortest

Remain Time.

Because current processing power of personal com-

puter or workstation is much higher than satellite on-

board computer, the simulation time is much smaller

than real world time. As the result, a user can see the

simulation as like quick moving picture. Of course it may

be helpful to cover a long time simulation period of low

activity quickly. As shown in Fig. 5, load balancing can

be used to boost up or slow down the simulation period

which shown to user.

So, scheduler operates as shown in Fig. 6 (ESA 2008).

Scheduler services the periodical or aperiodical event if

applicable. Otherwise processor emulator dominantly

possess the simulation time until new event is available. Fig. 5. Scheduler load balancing mechanism.

Fig. 6. Scheduler operation.

411

Cheol-Hea Koo et al. SMI compatible simulation scheduler

http://janss.kr

Actually processing time of each event is not reflected at

simulation time. If simulation time is too deviated to real

world time, Zulu Time, simulation is paused thanks to

simulation time balancing (load balancing).

4. SIMULATION SCHEDULER DEMONSTRATION

Prototype of simulation scheduler is developing with

Qt and C++ programming language on Linux. Simplified

but full functional SMIPublishService(), SMIExtSchedu-

leEvent() and SMIExtDeleteEvent() APIs are implement-

ed. Also simulator model object management simulator

module is also implemented since model object is im-

portant to call the event handler published by SMIPub-

lishService() API.

A demo simulator which consists of following item or

processing is proposed.

- Simulator model registration

- Simulator model initialization

• Add several services through SMIPublish

Service() API

- Pusle per second (PPS) handler

- Mil bus handler

• Set schedul through SMIExtScheduleEvent

 () API

Fig. 7. Scheduler demonstration.

- PPS handler, set to 1 sec cycle

- Mil bus handler, set to 4 sec cycle with 4

 sec delay

- Scheduler initialization

- Simulation start

• Add one shot event

- Just with 30 ms delay

• Delete scheduled event through SMIExt

 DeleteEvent() API

- First delete PPS event

- Second delete Mil bus event after 11 sec

 from deleting PPS event

- Simulation stop

- Scheduler stop

In this demo simulator, the tested simulator model is

the exact same with simulator models which are work-

ing on SIMSAT v 4.0. The only difference is TSIM from

Aeroflex Gaisler which is used for processor emulator for

ERC32 sparc processor. It means there is no dependency

to processor emulator for scheduler implementation.

Fig. 7 presents a demo of SMI scheduler with example

RTEMS program running with TSIM for ERC32. The dem-

onstration is performed by above scheduled items. In left

window in Fig. 7, scheduler event is being logged. In right

window in Fig. 7, running message from the example

RTEMS program is being displayed. So it can be conclud-

DOI: 10.5140/JASS.2010.27.4.407 412

J. Astron. Space Sci. 27(4), 407-412 (2010)

ed that the demo simulator well represents the scheduler

functionality of SIMSAT for the view of compatibility on

SMP/SMI under simplified demonstration purpose.

5. CONCLUSIONS

The purpose of developing simulator scheduler is to

develop a mission specific simulator platform so as to

cover new mission specific requirements more quickly in

addition to reuse heritage simulator model compatible

with SMP/SMI.

KARI has been developing simulated software test

bench (STB) under SIMSAT 4.0 with simulator models

which are designed to be compatible with SMP/SMI.

Since recently a mission specific requirement is intro-

duced, HAL supported satellite simulator is being con-

sidered to be developed (Koo & Lee 2009). It is checked

that the proven simulator models can be used if a simula-

tor platform supports SMP/SMI and commercial simula-

tor models can be integrated in the simulator platform.

It would be a meaningful conclusion that the support

to the SMP/SMI can reduce risk, cost, development time

for the manufacture of the HAL supported satellite simu-

lator.

REFERENCES

European Space Agency (ESA) 2002, EWP-2080

European Space Agency (ESA) 2008, EGOS-SIM-SIM-SUM-

1001

Koo, C. H. & Lee, S. K. 2009, Approach to the Use of Simu-

lated Software Test Bench in Integration Test of Flight

Software, INTELEC 2009

