애매 bi -군과 퍼지 bi -함수의 성질에 관한 연구
 On some properties of vague bi-groups and fuzzy bi-functions

장이채* \cdot 김태균 ${ }^{* *}$ - 이병제 ${ }^{* *}$ - 김원주 ${ }^{* * *}$
Lee-Chae Jang*, Taekyun Kim ${ }^{* *}$, Byungje Lee ${ }^{* * *}$ and Won-Joo Kim***
*Dept. of Mathematics and Computer Science, Konkuk University
**Division of General Education, Kwangwoon University
***Dept. of Wireless Communications Engineering, Kwangwoon University
****The Research Institute of natural Sciences, Konkuk University

Abstract

M. Demirci[Vague groups, J. math. Anal. Appl. vol.230, pp. 142-156, 1999] studied the vague group operation on a crisp set as a fuzzy function and estabished the vague group structure on a crisp set. In this paper we consider bi-groups which are studied by A.A.A. Agboola and L.S. Akinola. And we also will define vague bi-groups and fuzzy bi-functions and we investigate some basic operations on the vague bi-group and fuzzy bi-functions.

Key Words : bi-groups, vague groups, fuzzy equality, vague binary operation, vague bi-groups, fuzzy bi-functions.

1. Introduction

Fuzzy sets proposed by Zadeh in 1968([8]) and fuzzy settings of various algebraic concepts were studied by several authors. Many authors have worked to present the fuzzy setting of various algebraic concepts based on the papers [1,5,6,7].

To get a more general extension, Demirchi $[5,7] \mathrm{de}^{-}$ fined the concept of vague group based on fuzzy equalities and fuzzy functions. He also established the vague group structure on a crisp set.

The concept of fuzzy equality and fuzzy function given in $[5,6,7]$ provides a good tool for fuzzifying the group operation on a crisp set.

Let X, Y be crisp sets. A mapping $E_{X}: X \times X \rightarrow[0,1]$ is called a fuzzy equality on X if and only if the following conditions are satisfied:
(i) $E_{X}(x, y)=1$ if and only if $x=y, \forall x, y \in X$,
(ii) $E_{X}(x, y)=E_{X}(y, x), \quad \forall x, y \in X$, and
(iii) $\min \left[E_{X}(x, y), E_{X}(y, z)\right] \leq E_{X}(x, z), x, y, z \in X$.

The real number $E_{X}(x, y)$ is called the degree of x and y in X.

Let E_{X} and E_{Y} be two fuzzy equalities an X and Y, respectively. $f: X \rightarrow Y$ is called fuzzy function with respect to E_{X} and E_{Y} if and only if the membership function $\mu_{f}: X \times Y \rightarrow[0,1]$ of f satisfies the following

[^0]conditions:
(i) $\forall x \in X, \exists y \in Y$ such that $\mu_{f}(x, y)>0$, and
(ii) $\min \left[\mu_{f}(x, z), \mu_{f}(y, w), E_{X}(x, y)\right] \leq E_{Y}(z, w)$, $\forall x, y \in X, \forall w, z \in Y$.
A fuzzy function f is called a strong fuzzy function if and only if it satisfies the following additionally condition:
$$
\forall x \in X, \exists y \in Y \text { such that } \mu_{f}(x, y)=1
$$

In this paper we consider bi-groups which are defined by A.A.A. Agboola and L.S. Akinola [2] and W.B. Vasabtha Kadasamy [3]. And we also will define vague bi-groups and fuzzy bi-functions and we investigate some basic operations on vague bi-groups and fuzzy bi-functions.

2. Vague bigroups.

In this section, we consider vague binary operations, vague closed under the operations, vague semigroups, vague groups, fuzzy functions, etc.

Definition 2.1 ([6]) (1) A strong fuzzy function $f: X \times X \rightarrow X$ with respect to a fuzzy equality $E_{X \times X}$ on $X \times X$ and fuzzy equality E_{X} on X is said to be a vague binary operation with respect to $E_{X \times X}$ and E_{X}. (2) A vague binary operation f with repsect to $E_{X \times X}$ and E_{X} is said to be transitive of first order if it satisfies the following condition:

$$
\min \left[\mu_{f}(a, b, c), E_{X}(c, d)\right] \leq \mu_{f}(a, b, d), \quad \forall a, b, c \in X
$$

(3) A vague binary operation f on X with respect to $E_{X \times X}$ and E_{X} is said to be transitive of the second order if it satisfies the following condition:

$$
\min \left[\mu_{f}(a, b, c), E_{X}(b, d)\right] \leq \mu_{f}(a, d, c), \quad \forall a, b, c \in X
$$

(4) A vague binary operation f on X with respect to $E_{X \times X}$ and E_{X} is said to be transitive of the third order if it satisfies the following condition:

$$
\min \left[\mu_{f}(a, b, c), E_{X}(a, d)\right] \leq \mu_{f}(d, b, c), \quad \forall a, b, c \in X
$$

(5) Let f be a vague binary operation on X. A crisp subset B of X is said to be vague closed under f if it satisfies the following condition:

$$
\mu_{f}(a, b, c)=1 \Rightarrow c \in B, \text { for } \forall a, b \in B, \forall c \in X
$$

Definition 2.2 ([6]) Let 。 be a vague binary operation on X with respect to a fuzzy equality $E_{X \times X}$ on $X \times X$ and E_{X} on X. Then
(1) (X, \circ) is called a vague semigroup if the membership function $\mu_{\circ}: X \times X \times X \rightarrow[0,1]$ of \circ satisfies the following condition:

$$
\begin{array}{ll}
\min \left[\mu_{\circ}(b, c, d), \mu_{\circ}\right. & \left.(a, d, m), \mu_{\circ}(a, b, q), \mu_{\circ}(q, c, w)\right] \\
\leq E_{X}(m, w), & \forall a, b, c, d, q, m, w \in X .
\end{array}
$$

(2) A vague semigroup (X, \circ) is called a vague monoid if and only if it satisfies the following condition:

$$
\begin{aligned}
& \exists e \in X \text { such that } \\
& \quad \min \left[\mu_{\circ}(e, a, a), \mu_{\circ}(a, e, a)\right]=1, \quad \forall a \in X .
\end{aligned}
$$

(3) A vague monoid (X, \circ) is called a vague group if it satisfies the following condition:
$\forall a \in X, \exists a^{-1} \in X$ such that

$$
\min \left[\mu_{\circ}\left(a^{-1}, a, e\right), \mu_{\circ}\left(a, a^{-1}, e\right)\right]=1
$$

(4) A vague group (X, \circ) is said to be abelian (commutative) if \circ satisfies the following condition:

$$
\begin{aligned}
& \min \left[\mu_{\circ}(a, b, m), \mu_{\circ}(b, a, w)\right] \leq E_{X}(m, w) \\
& \forall a, b, m, w \in X
\end{aligned}
$$

Proposition 2.3 ([6]) Let o be a X with respect to $E_{X \times X}$ and E_{X} if (X, \circ) is a semigroup and 。 is transitive of the second and the third order, then (X, \circ) is a vague group.

Now, we will define vague bi-group and investigate cancellative law of vague bi-group, and some properties of them.

Definition 2.4 (1) A set (X, \oplus, \odot) with two vague
binary operation \oplus and \odot is called a vague bi-group if there exist two proper subsets X_{1} and X_{2} of X such that
(i) $X=X_{1} \cup X_{2}$,
(ii) $\left(X_{1}, \oplus\right)$ is a vague group,
(iii) $\left(X_{2}, \odot\right)$ is a vague group.
(2) A vague bigroup (X, \oplus, \odot) is said to be abelian if $\left(X_{1}, \oplus\right)$ and $\left(X_{2}, \odot\right)$ are vague abelian.

Theorem 2.5 (Cancellation law) Let (X, \oplus, \odot) be vague bi-group with respect to $E_{X \times X}$ on $X \times X$ and E_{X} on X. Then we have
(1) $\min \left[\mu_{\oplus}(a, b, u), \mu_{\oplus}(a, c, u)\right] \leq E_{X_{1}}(b, c)$,

$$
\text { for } \forall a, b, c, u \in X_{1}
$$

and

$$
\begin{aligned}
& \min \left[\mu_{\odot}\left(a^{\prime}, b^{\prime}, u^{\prime}\right), \mu_{\odot}\left(a^{\prime}, c^{\prime}, u^{\prime}\right)\right] \leq E_{X_{2}}\left(b^{\prime}, c^{\prime}\right) \\
& \forall a^{\prime}, b^{\prime}, c^{\prime}, u^{\prime} \in X_{2}
\end{aligned}
$$

(2) $\min \left[\mu_{\oplus}\left(b_{1}, a_{1}, u_{1}\right), \mu_{\oplus}\left(c_{1}, a_{1}, u_{1}\right)\right] \leq E_{X_{1}}\left(b_{1}, c_{1}\right)$, for $\forall a_{1}, b_{1}, c_{1}, u_{1} \in X_{1}$
and
$\min \left[\mu_{\odot}\left(b_{2}, a_{2}, u_{2}\right), \mu_{\odot}\left(c_{2}, a_{2}, u_{2}\right)\right] \leq E_{X_{2}}\left(b_{2}, c_{2}\right)$, $\forall a_{2}, b_{2}, c_{2}, u_{2} \in X_{2}$.

Proposition 2.6 Let (X, \oplus, \odot) be a vague bi-group with respect to $E_{X \times X}$ on $X \times X$ and E_{X} on X with $X=X_{1} \cup X_{2}$. Then we have
(1) The identity of $\left(X_{1}, \oplus\right)$ and $\left(X_{2}, \odot\right)$ is unique.
(2) Each element of (X, \oplus, \odot) has a unique inverse element in X . That is, each element of $\left(X_{1}, \oplus\right)$ and $\left(X_{2}, \odot\right)$ have a unique inverse element in X.
(3) For all $a=\left\{\begin{array}{ll}a_{1} & \text { if } a \in X_{1} \\ a_{2} & \text { if } a \in X_{2}\end{array}\right.$, we have

$$
\oplus^{-1}\left(\oplus^{-1} a_{1}\right)=a_{1} \text { and } \odot^{-1}\left(\odot^{-1} a_{2}\right)=a_{2}
$$

Proof. (1) Suppose that e_{1} and f_{1} are identities in $\left(X_{1}, \oplus\right)$ and that e_{2} and f_{2} are identities in $\left(X_{2}, \odot\right)$. Then we have

$$
\mu_{\oplus}\left(e_{1}, a_{1}, a_{1}\right)=\mu_{\oplus}\left(a_{1}, e_{1}, a_{1}\right)=1
$$

and

$$
\mu_{\odot}\left(e_{2}, a_{2}, a_{2}\right)=\mu_{\odot}\left(a_{2}, e_{2}, a_{2}\right)=1
$$

Also, we have

$$
\mu_{\oplus}\left(f_{1}, a_{1}, a_{1}\right)=\mu_{\oplus}\left(a_{1}, f_{1}, a_{1}\right)=1
$$

and

$$
\mu_{\odot}\left(f_{2}, a_{2}, a_{2}\right)=\mu_{\odot}\left(a_{2}, f_{2}, a_{2}\right)=1
$$

Thus, by cancellation law, we see that

$$
\min \left[\mu_{\oplus}\left(a_{1}, e_{1}, a_{1}\right), \mu_{\oplus}\left(a_{1}, f_{1}, a_{1}\right)\right] \leq E_{X_{1}}\left(e_{1}, f_{1}\right)
$$

and

$$
\min \left[\mu_{\odot}\left(a_{2}, e_{2}, a_{2}\right), \mu_{\odot}\left(a_{2}, e_{2}, a_{2}\right)\right] \leq E_{X_{2}}\left(e_{2}, f_{2}\right)
$$

Then, we obtain that

$$
E_{2}\left(e_{2}, f_{2}\right)=1 \text { and } E_{1}\left(e_{1}, f_{1}\right)=1
$$

So we have $e_{2}=f_{2}$ and $e_{1}=f_{1}$ and hence the identity of $\left(X_{1}, \oplus\right)$ and $\left(X_{2}, \odot\right)$ is unique.
(2) Let $e=\left\{\begin{array}{ll}e_{1} & \text { if } e \in X_{1} \\ e_{2} & \text { if } e \in X_{2}\end{array}\right.$ be identities in $X=X_{1} \cup X_{2}$. Suppose that $b=\left\{\begin{array}{ll}b_{1} & \text { if } b \in X_{1} \\ b_{2} & \text { if } b \in X_{2}\end{array}\right.$ and $c= \begin{cases}c_{1} & \text { if } c \in X_{1} \\ c_{2} & \text { if } c \in X_{2}\end{cases}$ are inverse of $a=\left\{\begin{array}{ll}a_{1} & \text { if } a \in X_{1} \\ a_{2} & \text { if } a \in X_{2}\end{array}\right.$. Then we have

$$
\mu_{\oplus}\left(a_{1}, b_{1}, e_{1}\right)=\mu_{\oplus}\left(b_{1}, a_{1}, e_{1}\right)=1
$$

and

$$
\mu_{\odot}\left(a_{2}, b_{2}, e_{2}\right)=\mu_{\odot}\left(b_{2}, a_{2}, e_{2}\right)=1
$$

Since $c=\left\{\begin{array}{ll}c_{1} & \text { if } c \in X_{1} \\ c_{2} & \text { if } c \in X_{2}\end{array}\right.$ is inverse of $a=\left\{\begin{array}{ll}a_{1} & \text { if } a \in X_{1} \\ a_{2} & \text { if } a \in X_{2}\end{array}\right.$, we also see that

$$
\mu_{\oplus}\left(a_{1}, c_{1}, e_{1}\right)=\mu_{\oplus}\left(c_{1}, a_{1}, e_{1}\right)=1
$$

and

$$
\mu_{\odot}\left(a_{2}, c_{2}, e_{2}\right)=\mu_{\odot}\left(c_{2}, a_{2}, e_{2}\right)=1
$$

Thus, by cancellation law, we see that

$$
\min \left[\mu_{\oplus}\left(a_{1}, b_{1}, e_{1}\right), \mu_{\oplus}\left(a_{1}, c_{1}, e_{1}\right)\right] \leq E_{X_{1}}\left(b_{1}, c_{1}\right)
$$

and

$$
\min \left[\mu_{\odot}\left(a_{2}, b_{2}, e_{2}\right), \mu_{\odot}\left(a_{2}, c_{2}, e_{2}\right)\right] \leq E_{X_{2}}\left(b_{2}, c_{2}\right)
$$

Then, we obtain that

$$
E_{1}\left(b_{1}, c_{1}\right)=1 \text { and } E_{2}\left(b_{2}, c_{2}\right)=1
$$

So we have $b=c$ and hence the identity of (X, \oplus, \odot) is unique.
(3) Let $e=\left\{\begin{array}{ll}e_{1} & \text { if } e \in X_{1} \\ e_{2} & \text { if } e \in X_{2}\end{array}\right.$ be identities in $X=X_{1} \cup X_{2}$. Suppose that $a=\left\{\begin{array}{ll}a_{1} & \text { if } a \in X_{1} \\ a_{2} & \text { if } a \in X_{2}\end{array}\right.$ has a unique inverse $a^{*}=\left\{\begin{array}{ll}\oplus^{-1}\left(a_{1}\right) & \text { if } a \in X_{1} \\ \odot^{-1}\left(a_{2}\right) & \text { if } a \in X_{2}\end{array}\right.$. Then we note that we note that

$$
\mu_{\oplus}\left(\oplus^{-1}\left(a_{1}\right), a_{1}, e_{1}\right)=1=\mu_{\oplus}\left(\oplus^{-1}\left(a_{1}\right), \oplus^{-1} \oplus^{-1}\left(a_{1}\right), e_{1}\right)
$$

and

$$
\mu \cdot\left(\odot^{-1}\left(a_{2}\right), a_{2}, e_{2}\right)=1=\mu \cdot\left(\odot^{-1}\left(a_{2}\right), \odot^{-1} \odot^{-1}\left(a_{2}\right), e_{2}\right)
$$

Thus, by cancellation law, we have
$\min \left[\mu_{\oplus}\left(\oplus^{-1}\left(a_{1}\right), a_{1}, e_{1}\right), \mu_{+}\left(\oplus^{-1}\left(a_{1}\right), \oplus^{-1} \oplus^{-1}\left(a_{1}\right), e_{1}\right)\right]$ $\leq E_{X_{1}}\left(a_{1}, \oplus^{-1} \oplus^{-1}\left(a_{1}\right)\right)$
and
$\min \left[\mu_{\odot}\left(\odot^{-1}\left(a_{2}\right), a_{2}, e_{2}\right), \mu_{\cdot}\left(\odot^{-1}\left(a_{2}\right), \odot^{-1} \odot^{-1}\left(a_{2}\right), e_{2}\right)\right]$ $\leq E_{X_{2}}\left(a_{2}, \odot^{-1} \odot^{-1}\left(a_{2}\right)\right)$

Then, we obtain that
$E_{1}\left(a_{1}, \oplus^{-1} \oplus^{-1}\left(a_{1}\right)\right)=1$ and $E_{2}\left(a_{2}, \odot^{-1} \odot^{-1}\left(a_{2}\right)\right)=1$.
So we have $\oplus^{-1} \oplus^{-1}\left(a_{1}\right)=a_{1}$ and $\odot^{-1} \odot^{-1}\left(a_{2}\right)=a_{2}$.

From Proposition 2.3, we can obtain the following proposition.

Proposition 2.7 If $\left(X_{1}, \oplus\right)$ is a semigroup and \oplus is a transtive of the second and third order, and if $\left(X_{1}, \odot\right)$ is a semigroup and \odot is a transtive of the second and third order, then (X, \oplus, \odot) is a vague bigroup.

3. Fuzzy bi-functions.

In this section, we define fuzzy bi-functions and investigate some characterizations of them.

Definition 3.1 Let X be crisp sets. If there exist two proper subsets X_{1} and X_{2} such that
(i) $X_{1} \cup X_{2}=X$,
(ii) X_{1} is closed under \oplus,
(iii) X_{2} is closed under \odot,
then X is called a crisp bi-set.

Example 3.2 Let $\mathbb{Q}, \mathbb{Q}^{+}, \mathbb{Q}^{-}$be the set of rational numbers, the set of nonnegative rational integers, the set of negative integers, respectively. Then $(\mathbb{Q},+, \bullet)$ is a crisp bi-set. In fact, $\mathbb{Q}=\mathbb{Q}^{+} \cup \mathbb{Q}^{-}$and \mathbb{Q}^{+}is closed under the usual addition + and \mathbb{Q}^{-}is closed under the usual multiplication •.

Definition 3.3 Let X be a crisp biset with $X=X_{1} \cup X_{2}$. A mapping $E_{X}: X \times X \rightarrow[0,1]$ is called a fuzzy bi-equality on X if it satisfies the following conditions:
(i) $E_{X_{1}}\left(x_{1}, y_{1}\right)=1$ and $E_{X_{2}}\left(x_{2}, y_{2}\right)=1$ if and only if $x_{1}=y_{1}$ and $x_{2}=y_{2}$, where $\quad x=\left\{\begin{array}{ll}x_{1} & \text { if } x \in X_{1} \\ x_{2} & \text { if } x \in X_{2}\end{array} \quad\right.$ and $y=\left\{\begin{array}{ll}y_{1} & \text { if } y \in Y_{1} \\ y_{2} & \text { if } y \in Y_{2}\end{array}\right.$,
(ii) $E_{X_{1}}\left(x_{1}, y_{1}\right)=E_{X_{1}}\left(y_{1}, x_{1}\right)$ and $E_{X_{2}}\left(x_{2}, y_{2}\right)=E_{X_{2}}\left(y_{2}, x_{2}\right)$,
(iii) $\left.\min \left[E_{X_{1}}\left(x_{1}, y_{1}\right), E_{X_{1}}\left(y_{1}, z_{1}\right)\right)\right] \leq E_{X_{1}}\left(x_{1}, z_{1}\right)$
and

$$
\left.\min \left[E_{X_{2}}\left(x_{2}, y_{2}\right), E_{X_{2}}\left(y_{2}, z_{2}\right)\right)\right] \leq E_{X_{2}}\left(x_{2}, z_{2}\right)
$$

where $\quad x=\left\{\begin{array}{l}x_{1} \text { if } x \in X_{1} \\ x_{2} \text { if } x \in X_{2}\end{array}, \quad y=\left\{\begin{array}{l}y_{1} \text { if } y \in Y_{1} \\ y_{2} \text { if } y \in Y_{2}\end{array}, \quad\right.\right.$ and $z=\left\{\begin{array}{ll}z_{1} & \text { if } z \in Z_{1} \\ z_{2} & \text { if } z \in Z_{2}\end{array}\right.$.

Now, we consider the following notation:

$$
X \otimes Y \equiv\left(X_{1} \times Y_{1}\right) \cup\left(X_{2} \times Y_{2}\right)
$$

where $X_{i} \times Y_{i}$ is the Cartesian product of X_{i} and Y_{i} for $i=1,2$.

Definition 3.4 Let X and Y be crisp bi-sets with $X=X_{1} \cup X_{2}$ and $Y=Y_{1} \cup Y_{2}$, respectively and let E_{X} and E_{Y} be three fuzzy bi-equalities on X and Y, respectively.
(1) $f: X \rightarrow Y$ is called a fuzzy bi-function with re $^{-}$ spect to E_{X} and E_{Y} if it satisfies the following conditions:
(I) there exist two fuzzy functions f_{1} and f_{2} of f such that $f=f_{1} \cup f_{2}$,
(II) the membership function $\mu_{f}: X \otimes Y \rightarrow[0,1]$ of f satisfies the following conditions:
(i) for all $x=\left\{\begin{array}{ll}x_{1} & \text { if } x \in X_{1} \\ x_{2} & \text { if } x \in X_{2}\end{array}, ~ \exists y= \begin{cases}y_{1} & \text { if } y \in Y_{1} \\ y_{2} & \text { if } y \in Y_{2}\end{cases}\right.$ such that $\mu_{f_{1}}\left(x_{1}, y_{1}\right)>0$ and $\mu_{f_{2}}\left(x_{2}, y_{2}\right)>0$,
(ii) $\min \left[\mu_{f_{1}}\left(x_{1}, z_{1}\right), \mu_{f_{1}}\left(y_{1}, w_{1}\right), E_{X_{1}}\left(x_{1}, y_{1}\right)\right]$

$$
\leq E_{Y_{1}}\left(z_{1}, w_{1}\right)
$$

and

$$
\begin{aligned}
& \min \left[\mu_{f_{2}}\left(x_{2}, z_{2}\right), \mu_{f_{2}}\left(y_{2}, w_{2}\right), E_{X_{2}}\left(x_{2}, y_{2}\right)\right] \\
& \leq E_{Y_{2}}\left(z_{2}, w_{2}\right)
\end{aligned}
$$

where $\quad x=\left\{\begin{array}{ll}x_{1} & \text { if } x \in X_{1} \\ x_{2} & \text { if } x \in X_{2}\end{array}, \quad y=\left\{\begin{array}{ll}y_{1} & \text { if } y \in X_{1} \\ y_{2} & \text { if } y \in X_{2}\end{array}\right.\right.$, $w=\left\{\begin{array}{ll}w_{1} & \text { if } w \in Y_{1} \\ w_{2} & \text { if } w \in Y_{2}\end{array}\right.$, and $z=\left\{\begin{array}{ll}z_{1} & \text { if } z \in Y_{1} \\ z_{2} & \text { if } z \in Y_{2}\end{array}\right.$.
(2) A fuzzy bi-function f is called a strongy fuzzy bifunction if it satisfies the following additional condition:
(iii) for all $x=\left\{\begin{array}{ll}x_{1} & \text { if } x \in X_{1} \\ x_{2} & \text { if } x \in X_{2}\end{array}, \exists y= \begin{cases}y_{1} & \text { if } y \in Y_{1} \\ y_{2} & \text { if } y \in Y_{2}\end{cases}\right.$ such that $\mu_{f_{1}}\left(x_{1}, y_{1}\right)=1$ and $\mu_{f_{2}}\left(x_{2}, y_{2}\right)=1$.

Definition 3.5 Let X and Y be crisp bisets and let $f=f_{1} \cup f_{2}$ be a fuzzy bi-function with respect to E_{X} on X and E_{Y} on Y.
(1) A fuzzy bi-function f is said to be surjective if and only if
$\forall y=\left\{\begin{array}{ll}y_{1} & \text { if } y \in Y_{1} \\ y_{2} & \text { if } y \in Y_{2}\end{array}, \exists x=\left\{\begin{array}{ll}x_{1} & \text { if } x \in X_{1} \\ x_{2} & \text { if } x \in X_{2}\end{array}\right.\right.$ such that

$$
\mu_{f_{1}}\left(x_{1}, y_{1}\right)>0 \text { and } \mu_{f_{2}}\left(x_{2}, y_{2}\right)>0
$$

(2) A fuzzy bi-function f is said to be strong surjective if and only if
$\forall y=\left\{\begin{array}{ll}y_{1} & \text { if } y \in Y_{1} \\ y_{2} & \text { if } y \in Y_{2}\end{array}, \exists x=\left\{\begin{array}{ll}x_{1} & \text { if } x \in X_{1} \\ x_{2} & \text { if } x \in X_{2}\end{array}\right.\right.$ such that

$$
\mu_{f_{1}}\left(x_{1}, y_{1}\right)=1 \text { and } \mu_{f_{2}}\left(x_{2}, y_{2}\right)=1
$$

(3) A fuzzy bi-function f is said to be injective if and only if

$$
\left.\begin{array}{l}
\forall x=\left\{\begin{array}{ll}
x_{1} & \text { if } x \in X_{1} \\
x_{2} & \text { if } x \in X_{2}
\end{array}, y=\left\{\begin{array}{ll}
y_{1} & \text { if } y \in X_{1} \\
y_{2} & \text { if } y \in X_{2}
\end{array},\right.\right.
\end{array}\right\} \begin{aligned}
& \forall w=\left\{\begin{array}{ll}
w_{1} & \text { if } w \in Y_{1} \\
w_{2} & \text { if } w \in Y_{2}
\end{array}, z=\left\{\begin{array}{ll}
z_{1} & \text { if } z \in Y_{1} \\
z_{2} & \text { if } z \in Y_{2}
\end{array},\right.\right. \\
& \min \left[\mu_{f_{1}}\left(x_{1}, z_{1}\right), \mu_{f_{1}}\left(y_{1}, w_{1}\right), E_{Y_{1}}\left(z_{1}, w_{1}\right)\right] \\
& \leq E_{X_{1}}\left(z_{1}, y_{1}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \min \left[\mu_{f_{2}}\left(x_{2}, z_{2}\right), \mu_{f_{2}}\left(y_{2}, w_{2}\right), E_{X_{2}}\left(x_{2}, y_{2}\right)\right] \\
& \leq E_{Y_{2}}\left(z_{2}, w_{2}\right) .
\end{aligned}
$$

(4) A fuzzy bi-function f is said to be bijective if and only if it is surjective and injective.
(5) A fuzzy bi-function f is said to be strong bijective if and only if it is strong surjective and injective.

Definition 3.6 Let $X=X_{1} \cup X_{2}$ be a crisp bi-set. The fuzzy bi-relation $U=U_{1} \cup U_{2}$ on $X \otimes X$ defined by

$$
\mu_{U_{1}}\left(x_{1}, y_{1}\right)=\left\{\begin{array}{lll}
0 & \text { if } & x_{1}=y_{1} \\
1 & \text { if } & x_{1} \neq y_{1}
\end{array}, \quad\left(x_{1}, y_{1}\right) \in X_{1} \times X_{1}\right.
$$

and

$$
\mu_{U_{2}}\left(x_{2}, y_{2}\right)=\left\{\begin{array}{lll}
0 & \text { if } & x_{2}=y_{2} \\
1 & \text { if } & x_{2} \neq y_{2}
\end{array}, \quad\left(x_{2}, y_{2}\right) \in X_{2} \times X_{2}\right.
$$

is called a unit fuzzy bi-function on $X=X_{1} \cup X_{2}$ and is denoted by $U_{X}=U_{X_{1}} \cup U_{X_{2}}$.

Definition 3.7 Let $X=X_{1} \cup X_{2}, Y=Y_{1} \cup Y_{2}$, and $Z=Z_{1} \cup Z_{2}$ be crisp bi-sets and let $R=R_{1} \cup R_{2}$, $K=K_{1} \cup K_{2}$, and $S=S_{1} \cup S_{2}$ be fuzzy bi-relations on $X \otimes Y, Y \otimes X$, and $Y \otimes Z$, respectively.
(1) The sup-min composition $R \circ S$ of R and S on $X \otimes Z$ is defined by a fuzzy bi-relation with the membership function

$$
\mu_{R \circ S}=\mu_{R_{1} \circ S_{1}} \cup \mu_{R_{2} \circ S_{2}}: X \otimes Z \rightarrow I
$$

given by

$$
\begin{aligned}
& \mu_{R_{1}} \circ S_{1}\left(x_{1}, z_{1}\right) \\
& \quad=\sup _{y_{1} \in Y_{1}}\left[\min \left[\mu_{R_{1}}\left(x_{1}, y_{1}\right), \mu_{S_{1}}\left(y_{1}, z_{1}\right)\right]\right] \\
& \text { for } i=1,2
\end{aligned}
$$

(2) The fuzzy bi-relation K is said to be the inverse of the fuzzy bi-relation R if and only if

$$
\mu_{K}(y, x)=\mu_{R}(x, y), \quad \forall(x, y) \in X \otimes Y
$$

where $\mu_{K}(\cdot, \cdot)=\mu_{K_{1}}(\cdot, \cdot) \cup \mu_{K_{2}}(\cdot, \cdot)$.

We note that $\mu_{K}(y, x)=\mu_{R}(x, y), \quad \forall(x, y) \in X \otimes Y$ if and only if

$$
\mu_{K_{1}}(y, x)=\mu_{R_{1}}(x, y), \quad \forall(x, y) \in X_{1} \otimes Y_{1}
$$

and

$$
\mu_{K_{2}}(y, x)=\mu_{R_{2}}(x, y), \quad \forall(x, y) \in X_{2} \otimes Y_{2}
$$

From the above definition, we can obatin the following two propositions.

Proposition 3.8 Let $X=X_{1} \cup X_{2}, Y=Y_{1} \cup Y_{2}$, and $Z=Z_{1} \cup Z_{2}$ be crisp bi-sets and $f=f_{1} \cup f_{2}: X \rightarrow Y$ be a fuzzy bi-function on $X \otimes Y$ and $g=g_{1} \cup g_{2}: Y \rightarrow Z$ be fuzzy bi-function $Y \otimes Z$ on with respect to $E_{X}=E_{X_{1}} \cup E_{X_{2}}$ on X and $E_{Y}=E_{Y_{1}} \cup E_{Y_{2}}$ on Y , and $E_{Y}=E_{Y_{1}} \cup E_{Y_{2}} \quad$ on $\quad \mathrm{Y} \quad$ and $\quad E_{Z}=E_{Z_{1}} \cup E_{Z_{2}} \quad$ on $\quad Z$, respectively. Then the sup-min composition $g \circ f$ of f and g is a fuzzy bi-function on $X \otimes Z$ with respect to $E_{X}=E_{X_{1}} \cup E_{X_{2}}$ on X and $E_{Z}=E_{Z_{1}} \cup E_{Z_{2}}$ on Z.
Proof. Let $\mu_{g \circ f}: X \otimes Z \rightarrow[0,1]$ be the membership function of $g \circ f$. Then we have for each

$$
\begin{aligned}
& x=\left\{\begin{array}{l}
x_{1} \text { if } x \in X_{1} \\
x_{2} \\
\text { if } x \in X_{2}
\end{array} \text { and } z=\left\{\begin{array}{l}
z_{1} \text { if } z \in Z_{1} \\
z_{2} \\
\text { if } z \in Z_{2}
\end{array}\right.\right. \\
& \mu_{g \circ f}(x, z) \\
&= \sup _{y \in Y}\left[\min \left(\mu_{g}(y, z), \mu_{f}(x, y)\right)\right] \\
&= \sup _{y \in Y}\left[\operatorname { m i n } \left[\min \left(\mu_{g_{1}}\left(y_{1}, z_{1}\right), \mu_{g_{2}}\left(y_{2}, z_{2}\right)\right),\right.\right. \\
&\left.\left.\min \left(\mu_{f_{1}}\left(x_{1}, y_{1}\right), \mu_{f_{2}}\left(x_{2}, y_{2}\right)\right)\right]\right] \\
&= \sup _{y_{1} \in Y_{1}}\left[\min \left(\mu_{g_{1}}\left(y_{1}, z_{1}\right), \mu_{f_{1}}\left(x_{1}, y_{1}\right)\right)\right] \vee \\
& \sup _{y_{2} \in Y_{2}}\left[\min \left(\mu_{g_{2}}\left(y_{2}, z_{2}\right), \mu_{f_{2}}\left(x_{2}, y_{2}\right)\right)\right] \\
& \mu_{g_{1} \circ f_{1}}\left(x_{1}, z_{1}\right) \vee \mu_{g_{2} \circ f_{2}}\left(x_{2}, z_{2}\right) .
\end{aligned}
$$

That is, $g \circ f=\left(g_{1} \circ f_{1}\right) \cup\left(g_{2} \circ f_{2}\right)$.
Therefore, $g \circ f$ satisfies the condition (I) of Definition 3.4. Since $g_{1} \circ f_{1}$ and $g_{2} \circ f_{2}$ are fuzzy functions,

$$
\begin{aligned}
& \min \left[\mu_{g_{1} \circ f_{1}}\left(x_{1}, z_{1}\right), \mu_{g_{1} \circ f_{1}}\left(y_{1}, w_{1}\right), E_{X_{1}}\left(x_{1}, y_{1}\right)\right] \\
& \leq E_{Z_{1}}\left(z_{1}, w_{1}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \min \left[\mu_{g_{2} \circ f_{2}}\left(x_{2}, z_{2}\right), \mu_{g_{2} \circ f_{2}}\left(y_{2}, w_{2}\right), E_{X_{2}}\left(x_{2}, y_{2}\right)\right] \\
& \leq E_{Z_{2}}\left(z_{2}, w_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \min \left[\mu_{g \circ f}(x, z), \mu_{g \circ f}(y, w), E_{X}(x, y)\right] \\
& \leq E_{Z}(z, w)
\end{aligned}
$$

That is, $g \circ f$ satisfies the condition (II) of Definition 3.4. Therefore, $g \circ f$ is a fuzzy bi-function.

Proposition 3.9 Let $X=X_{1} \cup X_{2}$ and $Y=Y_{1} \cup Y_{2}$ be crisp bi-sets and $f=f_{1} \cup f_{2}: X \rightarrow Y$ be a fuzzy bi-function on $X \otimes Y$ with respect to $E_{X}=E_{X_{1}} \cup E_{X_{2}}$ on X and $E_{Y}=E_{Y_{1}} \cup E_{Y_{2}}$ on Y. If f is bijective, then we have the inverse bi-relation $f^{-1}=f_{1}^{-1} \cup f_{2}^{-1}$ of $f=f_{1} \cup f_{2}$ is a fuzzy bi-function on $Y \otimes X$.
Proof. The proof is clear!
Proposition 3.10 Let $X=X_{1} \cup X_{2}, Y=Y_{1} \cup Y_{2}$, and $Z=Z_{1} \cup Z_{2}$ be crisp bi-sets and $f=f_{1} \cup f_{2}: X \rightarrow Y$ on $X \otimes Y$ and $g=g_{1} \cup g_{2}: Y \rightarrow Z$ be fuzzy bi-functions on $Y \otimes Z$ with respect to $E_{X}=E_{X_{1}} \cup E_{X_{2}}$ on X and $E_{Y}=E_{Y_{1}} \cup E_{Y_{2}}$ on Y , and $E_{Y}=E_{Y_{1}} \cup E_{Y_{2}}$ on Y and $E_{Z}=E_{Z_{1}} \cup E_{Z_{2}}$ on Z, respectively. If f and g are bijective, then

$$
(g \circ f)^{-1}=f^{-1} \circ g^{-1}
$$

Proof. The proof is clear!

References

[1] 김태균, 박달원, 박홍경, 임석훈, 장이채, 대수학 입 문과 퍼지 응용, 교우사, 2003.
[2] A.A.A. Agboola and L.S. Akinola, "On Bicoset of a Bivector space", Preprint.
[3] W.B. Vasantha Kandasamy, "Bivector spaces"," U. Sci. Phy. Sci. vol. 11, pp.186-190.
[4] W.B. Vasantha Kadasamy, "Bialgebaric structures and smarandache bialgebraic structures", American Research Press Rehoboth, 2003.
[5] M. Demirci, "Vague groups", J. of Math. Anal. and Appl. vol.230, pp.142-156, 1999.
[6] S. Sezer, "Vague groups and generalized vague subgroups on the basis of $([0,1], \leq, \wedge)$ ", Information Sciences, vol.174, pp.123-142, 2003.
[7] M. Demirci, "The generalized associative law in vague groups and its applications II", Information Sciences, vol.176, pp.1488-1530, 2006.
[8] L.A. Zadeh, "Fuzzy sets", Inform. Control, vol.8, pp.338-353, 1968.

Thus,

저 자 소 개

장이채（Lee－Chae Jang）
1979년 2월：경북대 수학과（이학사）
1981년 2월：경북대 대학원 수학과 （이학석사）
1987년 2월：경북대 대학원 수학과 （이학박사）
1987년 6월～1998년 6월 ：미국 Cincinnati 대（교환교수）
1987년 3월～현재：건국대 전산수학과 교수
관심분야 ：함수해석학，쇼케이적분， p －진 해석학
E－mail ：leechae．jang＠kku．ac．kr

김태균（Taekyun Kim）
1994．03．25 ：규슈대학교（Kyushu Univ．） 이학 박사학위 취득（수학：수론）．
1994．4．1－1998．01．31 ：경북대，해군사관학교， 경남대，대진대，강사．
1999．02．01－2000．02．29 ：민사고，수학교사

이병제（Byungje Lee）
1988년2월 ：경북대 전자공학과（공학사）
1993년12월 ：Southern Illinois University， 전기 및 컴퓨터공학과（공학석사）
1997년5월：Southern Illinois University， 전기 및 컴퓨터공학과（공학박사）
1998년3월～현재 ：광운대학교 전파공학과 교수

관심분야 ：안테나 설계 및 해석，전자파관련 수치해석

김원주（Won－Joo Kim）
1998년 2월：신라대 수학과（이학사）
2000년 2월：경희대 대학원 수학과 （이학석사）
2005년 2월：경희대 대학원 수학과 （이학박사）
2006년 3월－현재 ：건국대 자연과학연구소
E－mail ：piterfan2＠kku．ac．kr

2000．03．01－2000．12．31 ：캐나다 Simon Fraser Univ．，CECM
의 Visitor
2001．4．12－2006．08．31 ：공주대 과학교육연구소，연구교수 2004．03．02－2007．02．28 ：한남대 대학원（수학），강사 2006．08．01－2008．02．29 ：경북대 전자전기컴퓨터학부，교수 2008．03．01－현재 ：광운대학교 교양학부（수학），부교수 1999．01．01－현재 ：Adv．Stud．Contemp．Math．편집위원 2000．01．01－현재 ：Proc．Jangjeon Math．Soc．편집위원 1994． 06.01 ：章田수학회 및 ⿱⿱亠䒑⿱日十一田수리물리 연구소 설립

[^0]: 접수일자: 2010년 3월 17일
 완료일자: 2010년 5월 8일

