애매 bi-군과 퍼지 bi-함수의 성질에 관한 연구

On some properties of vague bi-groups and fuzzy bi-functions

장이채^{*} · 김태균^{**} · 이병제^{***} · 김원주^{****}

Lee-Chae Jang*, Taekyun Kim**, Byungje Lee*** and Won-Joo Kim****

*Dept. of Mathematics and Computer Science, Konkuk University **Division of General Education, Kwangwoon University ***Dept. of Wireless Communications Engineering, Kwangwoon University

****The Research Institute of natural Sciences, Konkuk University

Abstract

M. Demirci[Vague groups, J. math. Anal. Appl. vol.230, pp. 142–156, 1999] studied the vague group operation on a crisp set as a fuzzy function and established the vague group structure on a crisp set. In this paper we consider bi-groups which are studied by A.A.A. Agboola and L.S. Akinola. And we also will define vague bi-groups and fuzzy bi-functions and we investigate some basic operations on the vague bi-group and fuzzy bi-functions.

Key Words : bi-groups, vague groups, fuzzy equality, vague binary operation, vague bi-groups, fuzzy bi-functions.

1. Introduction

Fuzzy sets proposed by Zadeh in 1968([8]) and fuzzy settings of various algebraic concepts were studied by several authors. Many authors have worked to present the fuzzy setting of various algebraic concepts based on the papers [1,5,6,7].

To get a more general extension, Demirchi [5,7] defined the concept of vague group based on fuzzy equalities and fuzzy functions. He also established the vague group structure on a crisp set.

The concept of fuzzy equality and fuzzy function given in [5,6,7] provides a good tool for fuzzifying the group operation on a crisp set.

Let X, Y be crisp sets. A mapping $E_X: X \times X \rightarrow [0,1]$ is called a fuzzy equality on X if and only if the following conditions are satisfied:

(i)
$$E_X(x,y) = 1$$
 if and only if $x = y, \forall x, y \in X$,

(ii)
$$E_X(x,y) = E_X(y,x), \quad \forall x,y \in X$$
, and

(iii)
$$\min [E_X(x,y), E_X(y,z)] \le E_X(x,z), x, y, z \in X.$$

The real number $E_X(x,y)$ is called the degree of x and y in X.

Let E_X and E_Y be two fuzzy equalities an X and Y, respectively. $f: X \to Y$ is called fuzzy function with respect to E_X and E_Y if and only if the membership function $\mu_f: X \times Y \to [0,1]$ of f satisfies the following

접수일자 : 2010년 3월 17일 완료일자 : 2010년 5월 8일 conditions:

(i)
$$\forall x \in X, \exists y \in Y$$
 such that $\mu_f(x,y) > 0$, and
(ii) $\min[\mu_f(x,y) = \mu_f(x,y)] \leq F_f(x,y) \leq F_f(x,y)$

ii)
$$\min |\mu_f(x,z), \mu_f(y,w), E_X(x,y)| \le E_Y(z,w),$$

 $\forall x, y \in X, \ \forall w, z \in Y.$

A fuzzy function f is called a strong fuzzy function if and only if it satisfies the following additionally condition:

$$\forall x \in X, \exists y \in Y \text{ such that } \mu_f(x,y) = 1.$$

In this paper we consider bi-groups which are defined by A.A.A. Agboola and L.S. Akinola [2] and W.B. Vasabtha Kadasamy [3]. And we also will define vague bi-groups and fuzzy bi-functions and we investigate some basic operations on vague bi-groups and fuzzy bi-functions.

2. Vague bigroups.

In this section, we consider vague binary operations, vague closed under the operations, vague semigroups, vague groups, fuzzy functions, etc.

Definition 2.1 ([6]) (1) A strong fuzzy function $f: X \times X \to X$ with respect to a fuzzy equality $E_{X \times X}$ on $X \times X$ and fuzzy equality E_X on X is said to be a vague binary operation with respect to $E_{X \times X}$ and E_X . (2) A vague binary operation f with respect to $E_{X \times X}$ and E_X is said to be transitive of first order if it satisfies the following condition: $\min\left[\mu_f(a,b,c), E_X(c,d)\right] \le \mu_f(a,b,d), \quad \forall a,b,c \in X.$

(3) A vague binary operation f on X with respect to $E_{X \times X}$ and E_X is said to be transitive of the second order if it satisfies the following condition:

$$\min\left[\mu_f(a,b,c), E_X(b,d)\right] \le \mu_f(a,d,c), \quad \forall a,b,c \in X.$$

(4) A vague binary operation f on X with respect to $E_{X \times X}$ and E_X is said to be transitive of the third order if it satisfies the following condition:

$$\min\left[\mu_f(a,b,c), E_X(a,d)\right] \le \mu_f(d,b,c), \quad \forall a,b,c \in X.$$

(5) Let f be a vague binary operation on X. A crisp subset B of X is said to be vague closed under f if it satisfies the following condition:

$$\mu_f(a,b,c) = 1 \Longrightarrow c \in B$$
, for $\forall a,b \in B, \forall c \in X$.

Definition 2.2 ([6]) Let \circ be a vague binary operation on X with respect to a fuzzy equality $E_{X \times X}$ on $X \times X$ and E_X on X. Then

(1) (X, \circ) is called a vague semigroup if the membership function $\mu_{\circ}: X \times X \times X \rightarrow [0,1]$ of \circ satisfies the following condition:

$$\min \left[\mu_{\circ}(b,c,d), \mu_{\circ}(a,d,m), \mu_{\circ}(a,b,q), \mu_{\circ}(q,c,w) \right]$$

$$\leq E_{X}(m,w), \qquad \forall a,b,c,d,q,m,w \in X.$$

(2) A vague semigroup (X, \circ) is called a vague monoid if and only if it satisfies the following condition:

$$\exists e \in X \text{ such that}$$
$$\min \left[\mu_{\circ} (e, a, a), \mu_{\circ} (a, e, a) \right] = 1, \ \forall a \in X.$$

(3) A vague monoid (X, \circ) is called a vague group if it satisfies the following condition:

$$\forall a \in X, \exists a^{-1} \in X$$
 such that
 $\min [\mu_{\circ}(a^{-1},a,e),\mu_{\circ}(a,a^{-1},e)] = 1.$

(4) A vague group (X, \circ) is said to be abelian (commutative) if \circ satisfies the following condition:

$$\begin{split} \min \left[\mu_{\circ}\left(a,b,m\right), \mu_{\circ}\left(b,a,w\right) \right] &\leq E_{X}(m,w), \\ \forall a,b,m,w \in X. \end{split}$$

Proposition 2.3 ([6]) Let \circ be a X with respect to $E_{X \times X}$ and E_X if (X, \circ) is a semigroup and \circ is transitive of the second and the third order, then (X, \circ) is a vague group.

Now, we will define vague bi-group and investigate cancellative law of vague bi-group, and some properties of them.

Definition 2.4 (1) A set (X, \oplus, \odot) with two vague

binary operation \oplus and \odot is called a vague bi-group if there exist two proper subsets X_1 and X_2 of X such that

(2) A vague bigroup (X, \oplus, \odot) is said to be abelian if (X_1, \oplus) and (X_2, \odot) are vague abelian.

Theorem 2.5 (Cancellation law) Let (X, \oplus, \odot) be vague bi–group with respect to $E_{X \times X}$ on $X \times X$ and E_X on X. Then we have

 $\begin{array}{ll} \text{(1)} & \min\left[\mu_{\oplus}(a,b,u),\mu_{\oplus}(a,c,u)\right] \leq E_{X_1}(b,c),\\ & \text{for } \forall a,b,c,u \in X_1 \end{array}$

and

$$\begin{split} \min \left[\mu_{\odot}(a',b',u'), \mu_{\odot}(a',c',u') \right] &\leq E_{X_{2}}(b',c') \\ \forall a',b',c',u' \in X_{2}. \end{split}$$

(2) $\min [\mu_{\oplus}(b_1, a_1, u_1), \mu_{\oplus}(c_1, a_1, u_1)] \le E_{X_1}(b_1, c_1),$ for $\forall a_1, b_1, c_1, u_1 \in X_1$

and

$$\begin{split} \min \left[\mu_{\odot}(b_2, a_2, u_2), \mu_{\odot}(c_2, a_2, u_2) \right] &\leq E_{X_2}(b_2, c_2), \\ \forall \, a_2, b_2, c_2, u_2 \in X_2. \end{split}$$

Proposition 2.6 Let (X, \oplus, \odot) be a vague bi-group with respect to $E_{X \times X}$ on $X \times X$ and E_X on X with $X = X_1 \cup X_2$. Then we have

(1) The identity of (X_1, \oplus) and (X_2, \odot) is unique. (2) Each element of (X, \oplus, \odot) has a unique inverse element in X. That is, each element of (X_1, \oplus) and (X_2, \odot) have a unique inverse element in X.

(3) For all
$$a = \begin{cases} a_1 & \text{if } a \in X_1 \\ a_2 & \text{if } a \in X_2 \end{cases}$$
, we have
 $\oplus^{-1}(\oplus^{-1}a_1) = a_1 \text{ and } \odot^{-1}(\odot^{-1}a_2) = a_2.$

Proof. (1) Suppose that e_1 and f_1 are identities in (X_1, \oplus) and that e_2 and f_2 are identities in (X_2, \odot) . Then we have

$$\mu_{\oplus}(e_1, a_1, a_1) = \mu_{\oplus}(a_1, e_1, a_1) = 1$$

and

$$\mu_{\odot}(e_2,a_2,a_2)=\mu_{\odot}(a_2,e_2,a_2)=1$$

Also, we have

$$\mu_{\oplus}(f_1, a_1, a_1) = \mu_{\oplus}(a_1, f_1, a_1) = 1$$

and

$$\mu_{\odot}(f_{2},a_{2},a_{2}) = \mu_{\odot}(a_{2},f_{2},a_{2}) = 1$$

Thus, by cancellation law, we see that

$$\min \left[\mu_{\oplus}(a_1, e_1, a_1), \mu_{\oplus}(a_1, f_1, a_1) \right] \le E_{X_1}(e_1, f_1)$$

and

$$\min[\mu_{\odot}(a_2, e_2, a_2), \mu_{\odot}(a_2, e_2, a_2)] \le E_{X_2}(e_2, f_2)$$

Then, we obtain that

$$E_2(e_2, f_2) = 1$$
 and $E_1(e_1, f_1) = 1$

So we have $e_2 = f_2$ and $e_1 = f_1$ and hence the identity of (X_1, \oplus) and (X_2, \odot) is unique.

(2) Let $e = \begin{cases} e_1 & \text{if } e \in X_1 \\ e_2 & \text{if } e \in X_2 \end{cases}$ be identities in $X = X_1 \cup X_2$. Suppose that $b = \begin{cases} b_1 & \text{if } b \in X_1 \\ b_2 & \text{if } b \in X_2 \end{cases}$ and $c = \begin{cases} c_1 & \text{if } c \in X_1 \\ c_2 & \text{if } c \in X_2 \end{cases}$ are inverse of $a = \begin{cases} a_1 & \text{if } a \in X_1 \\ a_2 & \text{if } a \in X_2 \end{cases}$. Then we have

$$\mu_{\oplus}(a_1, b_1, e_1) = \mu_{\oplus}(b_1, a_1, e_1) = 1$$

and

$$\mu_{\odot}(a_2, b_2, e_2) = \mu_{\odot}(b_2, a_2, e_2) = 1.$$

Since $c = \begin{cases} c_1 \text{ if } c \in X_1 \\ c_2 \text{ if } c \in X_2 \end{cases}$ is inverse of $a = \begin{cases} a_1 \text{ if } a \in X_1 \\ a_2 \text{ if } a \in X_2 \end{cases}$

we also see that

$$\iota_{\oplus}(a_1,c_1,e_1) = \mu_{\oplus}(c_1,a_1,e_1) = 1$$

and

$$\mu_{\odot}(a_2, c_2, e_2) = \mu_{\odot}(c_2, a_2, e_2) = 1.$$

Thus, by cancellation law, we see that

$$\min[\mu_{\oplus}(a_1, b_1, e_1), \mu_{\oplus}(a_1, c_1, e_1)] \le E_{\chi}(b_1, c_1)$$

and

$$\min\left[\mu_{\odot}(a_2, b_2, e_2), \mu_{\odot}(a_2, c_2, e_2)\right] \le E_{X_2}(b_2, c_2)$$

Then, we obtain that

$$E_1(b_1,c_1) = 1$$
 and $E_2(b_2,c_2) = 1$.

So we have b = c and hence the identity of (X, \oplus, \odot) is unique.

(3) Let
$$e = \begin{cases} e_1 & \text{if } e \in X_1 \\ e_2 & \text{if } e \in X_2 \end{cases}$$
 be identities in $X = X_1 \cup X_2$
Suppose that $a = \begin{cases} a_1 & \text{if } a \in X_1 \\ a_2 & \text{if } a \in X_2 \end{cases}$ has a unique inverse $a^* = \begin{cases} \bigoplus^{-1}(a_1) & \text{if } a \in X_1 \\ \bigoplus^{-1}(a_2) & \text{if } a \in X_2 \end{cases}$. Then we note that we note that

$$\mu_{\oplus}(\oplus^{-1}(a_1), a_1, e_1) = 1 = \mu_{\oplus}(\oplus^{-1}(a_1), \oplus^{-1} \oplus^{-1}(a_1), e_1)$$

and

$$\mu_{\bullet}(\odot^{-1}(a_2), a_2, e_2) = 1 = \mu_{\bullet}(\odot^{-1}(a_2), \odot^{-1} \odot^{-1}(a_2), e_2).$$

Thus, by cancellation law, we have

$$\min \left[\mu_{\oplus}(\oplus^{-1}(a_1), a_1, e_1), \mu_{+}(\oplus^{-1}(a_1), \oplus^{-1}\oplus^{-1}(a_1), e_1) \right] \\ \leq E_{X_i}(a_1, \oplus^{-1}\oplus^{-1}(a_1))$$

and

$$\begin{split} \min \left[\mu_{\odot}(\odot^{-1}(a_2), a_2, e_2), \mu_{\bullet}(\odot^{-1}(a_2), \odot^{-1}\odot^{-1}(a_2), e_2) \right] \\ &\leq E_{X_2}(a_2, \odot^{-1}\odot^{-1}(a_2)) \end{split}$$

Then, we obtain that

$$E_1(a_1, \oplus^{-1} \oplus^{-1}(a_1)) = 1$$
 and $E_2(a_2, \odot^{-1} \odot^{-1}(a_2)) = 1$.
So we have $\oplus^{-1} \oplus^{-1}(a_1) = a_1$ and $\odot^{-1} \odot^{-1}(a_2) = a_2$.

From Proposition 2.3, we can obtain the following proposition.

Proposition 2.7 If (X_1, \oplus) is a semigroup and \oplus is a transitive of the second and third order, and if (X_1, \odot) is a semigroup and \odot is a transitive of the second and third order, then (X, \oplus, \odot) is a vague bigroup.

3. Fuzzy bi-functions.

In this section, we define fuzzy bi-functions and investigate some characterizations of them.

Definition 3.1 Let X be crisp sets. If there exist two proper subsets X_1 and X_2 such that

(i) X₁ ∪ X₂ = X,
(ii) X₁ is closed under ⊕,
(iii) X₂ is closed under ⊙,
then X is called a crisp bi-set.

Example 3.2 Let $\mathbb{Q}, \mathbb{Q}^+, \mathbb{Q}^-$ be the set of rational numbers, the set of nonnegative rational integers, the set of negative integers, respectively. Then $(\mathbb{Q}, +, \bullet)$ is a crisp bi-set. In fact, $\mathbb{Q} = \mathbb{Q}^+ \cup \mathbb{Q}^-$ and \mathbb{Q}^+ is closed under the usual addition + and \mathbb{Q}^- is closed under the usual multiplication \bullet .

Definition 3.3 Let X be a crisp biset with $X = X_1 \cup X_2$. A mapping $E_X : X \times X \rightarrow [0,1]$ is called a fuzzy bi-equality on X if it satisfies the following conditions:

$$\begin{array}{ll} \text{(i)} & E_{X_1}(x_1,y_1) = 1 \text{ and } E_{X_2}(x_2,y_2) = 1 & \text{if and only if} \\ x_1 = y_1 \text{ and } x_2 = y_2, & \text{where} & x = \begin{cases} x_1 & \text{if } x \in X_1 \\ x_2 & \text{if } x \in X_2 \end{cases} & \text{and} \\ y = \begin{cases} y_1 & \text{if } y \in Y_1 \\ y_2 & \text{if } y \in Y_2 \end{cases}, \\ \text{(ii)} & E_{X_1}(x_1,y_1) = E_{X_1}(y_1,x_1) \text{ and } E_{X_2}(x_2,y_2) = E_{X_2}(y_2,x_2), \\ \text{(iii)} & \min[E_{X_1}(x_1,y_1),E_{X_1}(y_1,z_1))] \leq E_{X_1}(x_1,z_1) \end{cases}$$

and

$$\min[E_{X_2}(x_2, y_2), E_{X_2}(y_2, z_2))] \le E_{X_2}(x_2, z_2)$$

where $x = \begin{cases} x_1 \text{ if } x \in X_1 \\ x_2 \text{ if } x \in X_2 \end{cases}$, $y = \begin{cases} y_1 \text{ if } y \in Y_1 \\ y_2 \text{ if } y \in Y_2 \end{cases}$, and $z = \begin{cases} z_1 & \text{if } z \in Z_1 \\ z_2 & \text{if } z \in Z_2 \end{cases}$

Now, we consider the following notation:

$$X \otimes Y \equiv (X_1 \times Y_1) \cup (X_2 \times Y_2)$$

where $X_i \times Y_i$ is the Cartesian product of X_i and Y_i for i = 1, 2.

Definition 3.4 Let X and Y be crisp bi-sets with $X = X_1 \cup X_2$ and $Y = Y_1 \cup Y_2$, respectively and let E_X and E_Y be three fuzzy bi-equalities on X and Y, respectively.

(1) $f: X \rightarrow Y$ is called a fuzzy bi-function with respect to E_X and E_Y if it satisfies the following conditions:

(I) there exist two fuzzy functions f_1 and f_2 of fsuch that $f = f_1 \cup f_2$,

(II) the membership function $\mu_f: X \otimes Y \rightarrow [0,1]$ of f satisfies the following conditions:

(i) for all $x = \begin{cases} x_1 \text{ if } x \in X_1 \\ x_2 \text{ if } x \in X_2 \end{cases}$, $\exists y = \begin{cases} y_1 \text{ if } y \in Y_1 \\ y_2 \text{ if } y \in Y_2 \end{cases}$ such that $\mu_{f_1}(x_1,y_1) > 0$ and $\mu_{f_2}(x_2,y_2) > 0$,

(ii)
$$\min[\mu_{f_1}(x_1,z_1),\mu_{f_1}(y_1,w_1),E_{X_1}(x_1,y_1)] \le E_{Y_1}(z_1,w_1)$$

and

$$\min \left[\mu_{f_2}(x_2, z_2), \mu_{f_2}(y_2, w_2), E_{X_2}(x_2, y_2) \right] \\ \leq E_{Y_n}(z_2, w_2)$$

where $\begin{aligned} x &= \begin{cases} x_1 \text{ if } x \in X_1 \\ x_2 \text{ if } x \in X_2 \end{cases}, \qquad y = \begin{cases} y_1 \text{ if } y \in X_1 \\ y_2 \text{ if } y \in X_2 \end{cases}, \\ w &= \begin{cases} w_1 \text{ if } w \in Y_1 \\ w_2 \text{ if } w \in Y_2 \end{cases} \text{ and } z = \begin{cases} z_1 \text{ if } z \in Y_1 \\ z_2 \text{ if } z \in Y_2 \end{cases}. \end{aligned}$

(2) A fuzzy bi-function f is called a strongy fuzzy bifunction if it satisfies the following additional condition:

(iii) for all $x = \begin{cases} x_1 & \text{if } x \in X_1 \\ x_2 & \text{if } x \in X_2 \end{cases}$, $\exists y = \begin{cases} y_1 & \text{if } y \in Y_1 \\ y_2 & \text{if } y \in Y_2 \end{cases}$ such that $\mu_{f_1}(x_1, y_1) = 1$ and $\mu_{f_2}(x_2, y_2) = 1$.

Definition 3.5 Let X and Y be crisp bisets and let $f=f_1\cup f_2$ be a fuzzy bi-function with respect to E_X on X and E_Y on Y.

(1) A fuzzy bi-function f is said to be surjective if and only if

$$\forall \quad y = \begin{cases} y_1 & \text{if } y \in Y_1 \\ y_2 & \text{if } y \in Y_2 \end{cases} \quad \exists \quad x = \begin{cases} x_1 & \text{if } x \in X_1 \\ x_2 & \text{if } x \in X_2 \end{cases} \text{ such that} \\ \mu_{f_1}(x_1, y_1) > 0 \quad \text{and} \quad \mu_{f_2}(x_2, y_2) > 0. \end{cases}$$

(2) A fuzzy bi-function f is said to be strong surjective if and only if

$$\forall \quad y = \begin{cases} y_1 & \text{if } y \in Y_1 \\ y_2 & \text{if } y \in Y_2 \end{cases} \quad \exists \quad x = \begin{cases} x_1 & \text{if } x \in X_1 \\ x_2 & \text{if } x \in X_2 \end{cases} \text{ such that} \\ \mu_{f_1}(x_1, y_1) = 1 \quad \text{and} \quad \mu_{f_2}(x_2, y_2) = 1. \end{cases}$$

(3) A fuzzy bi-function f is said to be injective if and only if

$$\begin{array}{l} \forall \quad x = \begin{cases} x_1 \ \text{if} \ x \in X_1 \\ x_2 \ \text{if} \ x \in X_2 \end{cases}, \ y = \begin{cases} y_1 \ \text{if} \ y \in X_1 \\ y_2 \ \text{if} \ y \in X_2 \end{cases}, \\ \forall \quad w = \begin{cases} w_1 \ \text{if} \ w \in Y_1 \\ w_2 \ \text{if} \ w \in Y_2 \end{cases}, \ z = \begin{cases} z_1 \ \text{if} \ z \in Y_1 \\ z_2 \ \text{if} \ z \in Y_2 \end{cases} \\ \min \left[\mu_{f_1}(x_1, z_1), \mu_{f_1}(y_1, w_1), E_{Y_1}(z_1, w_1) \right] \\ \leq E_{X_1}(z_1, y_1) \end{cases}$$

and

$$\begin{split} \min \left[\mu_{f_2}(x_2, z_2), \mu_{f_2}(y_2, w_2), E_{X_2}(x_2, y_2) \right] \\ &\leq E_{Y_2}(z_2, w_2) \end{split}$$

(4) A fuzzy bi-function f is said to be bijective if and only if it is surjective and injective.

(5) A fuzzy bi-function f is said to be strong bijective if and only if it is strong surjective and injective.

Definition 3.6 Let $X = X_1 \cup X_2$ be a crisp bi-set. The fuzzy bi-relation $U = U_1 \cup U_2$ on $X \otimes X$ defined by

 $\mu_{U_1}(x_1, y_1) = \begin{cases} 0 & \text{if } x_1 = y_1 \\ 1 & \text{if } x_1 \neq y_1 \end{cases}, \quad (x_1, y_1) \in X_1 \times X_1$

and

$$\mu_{U_2}(x_2, y_2) = \begin{cases} 0 & \text{if } x_2 = y_2 \\ 1 & \text{if } x_2 \neq y_2 \end{cases} \quad (x_2, y_2) \in X_2 \times X_2$$

is called a unit fuzzy bi-function on $X = X_1 \cup X_2$ and is denoted by $U_X = U_{X_1} \cup U_{X_2}$.

Definition 3.7 Let $X = X_1 \cup X_2, Y = Y_1 \cup Y_2$, and $Z = Z_1 \cup Z_2$ be crisp bi-sets and let $R = R_1 \cup R_2$, $K = K_1 \cup K_2$, and $S = S_1 \cup S_2$ be fuzzy bi-relations on $X \otimes Y$, $Y \otimes X$, and $Y \otimes Z$, respectively.

(1) The sup-min composition $R \circ S$ of R and S on $X \otimes Z$ is defined by a fuzzy bi-relation with the membership function

$$\mu_{R \circ S} = \mu_{R_1 \circ S_1} \cup \mu_{R_2 \circ S_2} : X \otimes Z \rightarrow I$$

given by

$$\begin{split} & \mu_{R_1 \circ S_1}(x_1, z_1) \\ &= \sup_{y_1 \in Y_1} [\min \left[\mu_{R_1}(x_1, y_1), \mu_{S_1}(y_1, z_1) \right] \right] \\ & \text{for } i = 1, 2. \end{split}$$

(2) The fuzzy bi-relation K is said to be the inverse of the fuzzy bi-relation R if and only if

where $\mu_{K}(\cdot, \cdot) = \mu_{K_{1}}(\cdot, \cdot) \cup \mu_{K_{2}}(\cdot, \cdot).$

We note that $\mu_K(y,x) = \mu_R(x,y), \ \forall \ (x,y) \in X \otimes Y$ if and only if

$$\mu_{K_{1}}(y,x) = \mu_{R_{1}}(x,y), \quad \forall (x,y) \in X_{1} \otimes Y_{1}$$

and

$$\mu_{K_2}(y,x) = \mu_{R_2}(x,y), \quad \forall \ (x,y) \in X_2 \otimes Y_2,$$

From the above definition, we can obtain the following two propositions.

Proposition 3.8 Let $X = X_1 \cup X_2$, $Y = Y_1 \cup Y_2$, and $Z = Z_1 \cup Z_2$ be crisp bi-sets and $f = f_1 \cup f_2 : X \rightarrow Y$ be a fuzzy bi-function on $X \otimes Y$ and $g = g_1 \cup g_2 : Y \rightarrow Z$ be fuzzy bi-function $Y \otimes Z$ on with respect to $E_X = E_{X_1} \cup E_{X_2}$ on X and $E_Y = E_{Y_1} \cup E_{Y_2}$ on Y, and $E_Y = E_{Y_1} \cup E_{Z_2}$ on Z, respectively. Then the sup-min composition $g \circ f$ of f and g is a fuzzy bi-function on $X \otimes Z$ with respect to $E_X = E_{X_1} \cup E_{X_2}$ on X and $E_Z = E_{Z_1} \cup E_{Z_2}$ on Z.

Proof. Let $\mu_{g \circ f} \colon X \otimes Z \to [0,1]$ be the membership function of $g \circ f$. Then we have for each

$$\begin{aligned} x &= \begin{cases} x_1 & \text{if } x \in X_1 \\ x_2 & \text{if } x \in X_2 \end{cases} \text{ and } z = \begin{cases} z_1 & \text{if } z \in Z_1 \\ z_2 & \text{if } z \in Z_2 \end{cases}, \\ \mu_{g \circ f}(x,z) \\ &= \sup_{y \in Y} \left[\min\left(\mu_g(y,z), \mu_f(x,y)\right) \right] \\ &= \sup_{y \in Y} \left[\min\left[\min\left(\mu_{g_1}(y_1,z_1), \mu_{g_2}(y_2,z_2)\right), \\ \min\left(\mu_{f_1}(x_1,y_1), \mu_{f_2}(x_2,y_2)\right) \right] \right] \\ &= \sup_{y_1 \in Y_1} \left[\min\left(\mu_{g_1}(y_1,z_1), \mu_{f_1}(x_1,y_1)\right) \right] \lor \\ &\sup_{y_2 \in Y_2} \left[\min\left(\mu_{g_2}(y_2,z_2), \mu_{f_2}(x_2,y_2)\right) \right] \\ &= \mu_{g_1 \circ f_1}(x_1,z_1) \lor \mu_{g_2 \circ f_2}(x_2,z_2). \end{aligned}$$

That is, $g \circ f = (g_1 \circ f_1) \cup (g_2 \circ f_2)$. Therefore, $g \circ f$ satisfies the condition (I) of Definition 3.4. Since $g_1 \circ f_1$ and $g_2 \circ f_2$ are fuzzy func-

tions,
$$\begin{split} \min \left[\mu_{g_1 \ \circ \ f_1}(x_1,z_1), \mu_{g_1 \ \circ \ f_1}(y_1,w_1), E_{X_1}(x_1,y_1) \right] \\ & \leq E_Z(z_1,w_1) \end{split}$$

and

$$\begin{split} \min \left[\mu_{g_2 \circ f_2}(x_2, z_2), \mu_{g_2 \circ f_2}(y_2, w_2), E_{X_2}(x_2, y_2) \right] \\ &\leq E_{Z_2}(z_2, w_2) \,. \end{split}$$

Thus,

$$\min[\mu_{g \circ f}(x,z), \mu_{g \circ f}(y,w), E_X(x,y)] \le E_Z(z,w).$$

That is, $g \circ f$ satisfies the condition (II) of Definition 3.4. Therefore, $g \circ f$ is a fuzzy bi-function.

Proposition 3.9 Let $X = X_1 \cup X_2$ and $Y = Y_1 \cup Y_2$ be crisp bi-sets and $f = f_1 \cup f_2 : X \to Y$ be a fuzzy bi-function on $X \otimes Y$ with respect to $E_X = E_{X_1} \cup E_{X_2}$ on X and $E_Y = E_{Y_1} \cup E_{Y_2}$ on Y. If f is bijective, then we have the inverse bi-relation $f^{-1} = f_1^{-1} \cup f_2^{-1}$ of $f = f_1 \cup f_2$ is a fuzzy bi-function on $Y \otimes X$. **Proof.** The proof is clear!

Proposition 3.10 Let $X = X_1 \cup X_2$, $Y = Y_1 \cup Y_2$, and $Z = Z_1 \cup Z_2$ be crisp bi-sets and $f = f_1 \cup f_2 : X \to Y$ on $X \otimes Y$ and $g = g_1 \cup g_2 : Y \to Z$ be fuzzy bi-functions on $Y \otimes Z$ with respect to $E_X = E_{X_1} \cup E_{X_2}$ on X and $E_Y = E_{Y_1} \cup E_{Y_2}$ on Y, and $E_Y = E_{Y_1} \cup E_{Y_2}$ on Y and $E_Z = E_{Z_1} \cup E_{Z_2}$ on Z, respectively. If f and g are bijective, then

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}.$$

Proof. The proof is clear!

References

- [1] 김태균, 박달원, 박홍경, 임석훈, 장이채, *대수학 입 문과 퍼지 응용*, 교우사, 2003.
- [2] A.A.A. Agboola and L.S. Akinola, "On Bicoset of a Bivector space", Preprint.
- [3] W.B. Vasantha Kandasamy, "Bivector spaces"," U. Sci. Phy. Sci. vol. 11, pp.186–190.
- [4] W.B. Vasantha Kadasamy, "Bialgebaric structures and smarandache bialgebraic structures", *American Research Press Rehoboth*, 2003.
- [5] M. Demirci, "Vague groups", J. of Math. Anal. and Appl. vol.230, pp.142–156, 1999.
- [6] S. Sezer, "Vague groups and generalized vague subgroups on the basis of $([0,1], \leq, \wedge)$ ", *Information Sciences*, vol.174, pp.123–142, 2003.
- [7] M. Demirci, "The generalized associative law in vague groups and its applications II", *Information Sciences*, vol.176, pp.1488–1530, 2006.
- [8] L.A. Zadeh, "Fuzzy sets", Inform. Control, vol.8, pp.338–353, 1968.

1988년2월:경북대 전자공학과(공학사)

1993년12월 : Southern Illinois University, 전기 및 컴퓨터공학과(공학석사) 1997년5월: Southern Illinois University, 전기 및 컴퓨터공학과(공학박사) 1998년3월~현재:광운대학교 전파공학과 교수

관심분야 : 안테나 설계 및 해석, 전자파관련 수치해석

김원주(Won-Joo Kim) 1998년 2월: 신라대 수학과(이학사) 2000년 2월: 경희대 대학원 수학과 (이학석사) 2005년 2월:경희대 대학원 수학과 (이학박사) 2006년 3월-현재:건국대 자연과학연구소

E-mail : piterfan2@kku.ac.kr

장이채(Lee-Chae Jang) 1979년 2월: 경북대 수학과(이학사) 1981년 2월: 경북대 대학원 수학과 (이학석사) 1987년 2월: 경북대 대학원 수학과 (이학박사) 1987년 6월~1998년 6월 : 미국 Cincinnati 대(교환교수)

1987년 3월~현재:건국대 전산수학과 교수

관심분야 : 함수해석학, 쇼케이적분, p-진 해석학 E-mail : leechae.jang@kku.ac.kr

김태균(Taekyun Kim)

저 자 소 개

1994.03.25 : 규슈대학교(Kyushu Univ.) 이학 박사학위 취득(수학: 수론). 1994.4.1-1998.01.31 : 경북대, 해군사관학교, 경남대, 대진대, 강사. 1999.02.01-2000.02.29 : 민사고, 수학교사

2000.03.01-2000.12.31 : 캐나다 Simon Fraser Univ., CECM 의 Visitor 2001.4.12-2006.08.31 : 공주대 과학교육연구소, 연구교수

2004.03.02-2007.02.28: 한남대 대학원(수학), 강사 2006.08.01-2008.02.29: 경북대 전자전기컴퓨터학부, 교수 2008.03.01-현재:광운대학교 교양학부(수학), 부교수 1999.01.01-현재: Adv. Stud. Contemp. Math. 편집위원 2000.01.01-현재: Proc. Jangjeon Math. Soc. 편집위원 1994. 06.01: 章田수학회 및 章田수리물리 연구소 설립