Abstract
As wind has become one of the fastest growing renewable energy sources, the key issue of wind energy conversion systems is how to efficiently operate the wind turbines in a wide range of wind speeds. The wind speed has a huge impact on the dynamic response of wind turbine. For this purpose, many control algorithms are in need for a method to measure wind speed to increase performance. Unfortunately, no accurate measurement of the effective wind speed is online available from direct measurements, which means that it must be estimated in order to make such control methods applicable in practice. In this paper, a new method based on Kalman filter and artificial neural network is presented for the estimation of the effective wind speed. To verify the performance of the proposed scheme, some simulation studies are carried out.
최근 풍력발전 시스템은 가장 빨리 발전하고 있는 신재생 에너지원중 하나로 각광을 받고 있으며, 풍력발전 시스템의 주된 관심사는 어떻게 광범위한 풍속의 변화에서도 효율적으로 시스템을 동작시키는 가에 있다. 일반적으로 풍속은 풍력발전시스템의 동특성에 큰 영향을 미치는 요소이다. 따라서 많은 풍력발전 제어 알고리듬은 성능향상을 위해 풍속의 측정을 요구하게 된다. 그러나 불행히도 풍속계와 같은 센서에 의한 실효 풍속의 정확한 측정은 어려운 실정이며 따라서 제어 시스템의 동작을 위해 풍속은 여러 가지 기법을 통해 추정되고 있는 실정이다. 이에 본 연구에서는 칼만 필터 및 신경망에 기반한 새로운 형태의 풍속 추정 기법을 제안하고 제안된 기법의 유용성 확인을 위해 다양한 형태의 시뮬레이션을 수행하고자 한다.