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Abstract

Up to now, in the area of fuzzy topology, almost all the researchers have investigated fuzzy continuities by
using ordinary mappings. However, in this paper, we study continuities by using fuzzy mappings introduced by

Demirci [2].
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1. Introduction

In 1965, Zadeh [7] introduced the concept of fuzzy
sets as the generalization of ordinary subsets. There-
after many investigations have been carried out, in the
general theoretical field based on that. First, Chang
[1] introduced the notion of fuzzy topology and after
that, Srivastava et. al[5], Pu and Liu [3,4] and Yalvac
[6], etc., studied fuzzy topological spaces.

Throughout this paper, X,Y,Z, etc., denote crisp
sets, I [resp. Iy and Iy] denotes the closed unit in-
terval [0, 1](resp. open interval (0,1) and open-closed
interval (0,1]) and I denotes the set of all the fuzzy
sets in X.

2. Preliminaries

In this section, we list some concept introduced and
some results obtained by Demirci [2].

Definition 2.1 [2]. A mapping Ex : X x X — [ is
called a fuzzy equality on X if it satisfies the following
conditions :

(el) Ex(z,y) =1 =y Vr,ye X,

(e.2) Ex(z,y) = Ex(y,z),Vz, y € X,

(e.3) Ex(z,y)NEx(y,2) < Ex(x,z2),Vx,y, z € X.
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The real number Ex(z,y) represents the degree of
the equality of x and y for z,y € X. We will denote
the set of all the fuzzy equalities on as E(X).

Definition 2.2 [6].

(1) R is called a fuzzy relation from X toY (or on
X xY)if Re XY,

(2) Let R and S be fuzzy relations on X x Y and
Y x Z respectively. Then the (sup - min) composition
of R and S, denoted by S o R, is a fuzzy relation on
X X Z defined by

(S o R)(z,2)
X, Vze Z

(3) Let R be a fuzzy relation on X x Y. Then the
inverse of R, denoted by R™!, is the fuzzy relation on
Y x X defined by R~!(y,z) = R(z,y)Vz € X,Vy € Y.

Vyey[R(@,y) A S(y,2)], Vz €

Definition 2.3 [2]. A fuzzy relation f on X x Y

is called a fuzzy mapping with respect to (for short

wrt.) Ex € E(X) and Ey € E(Y), denoted by

f: X =Y , it satisfies the following conditions:
(f1)Va € X,3y € Y such that f(z,y) >0,
(f.2) Ve,Yy € X, V2, VYw €Y, f(z,2) N f(y,w) A

Ex(z,y) < Ey(z,w).

In particular, if f(z,y) = 1, then we will write

y = f(z).

Definition 2.4 [2]. Let f: X — Y be a fuzzy map-

ping wr.t. Ex € E(X) and Ey € E(Y). Then f is
said to be :
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(1) strong if Vo € X, Jy € Y such that f(z,y) =1,
(2) surjective if Vy € Y, 3z € X such that f(z,y) >

0,
3 strong surjective if Vy € Y, 3x € X such that

(3)
flz,y) =
(4) mjectwe if f(z,2) A fly,w) A Ey(z,w) <
Ex(z,y),Ve,y € X,Vz, w Y,
(5) bijective if it is surjective and injective,
(6) strong bijective if it is strong surjective and
injective.

Definition 2.5 [2]. The fuzzy identity mapping Ix :
X — X on X is the fuzzy relation on X x X defined
by

|1 ifax=y,
IX(x,y)—{ 0 ifx#y, Va,Vye X

It is clear that Ix : X — X is a strong fuzzy map-
ping w.r.t. a fuzzy equality Ex on X. Moreover, it is
strong bijective w.r.t. a fuzzy equality Ex on X.

Result 2.A [2, Proposition 2.1]. Letf : X — Y
and g : Y — Z be fuzzy mappings w.r.t. Ex € E(X),
Ey € E(Y) and Ez € E(Z). Thengo f: X — Zisa
fuzzy mapping w.r.t. Ex and Ez.

Result 2.B [2, Proposition 2.2]. Let f : X — Y be
a fuzzy mapping w.r.t. Ex € E(X) and Ey € E(Y).
Then f~':Y — Y is a fuzzy mapping w.r.t. Fy and
FEx if and only if f is bijective.

Result 2.C [2, Proposition 2.3]. Let f: X — Y
be strong and injective w.r.t. Ex = Ix € E(X) and
Ey € E(Y). Then f~lo f =1Ix.

Result 2.D [2, Proposition 2.4]. Let f: X —» Y
and g : Y — Z be bijective w.r.t. Ex € E(X),Ey €
E(Y) and Ez € E(Z). Then (go f)™! = f~log™!
and (go f)™': Z — X is a fuzzy mapping w.r.t. Ey
and Ex.

Definition 2.6 [2]. Let f: X — Y be a fuzzy map-
ping, let A € I and let B € IY. Then :
(1) The image of A under f, denoted by f(A), is
a fuzzy set in Y defined by
JA) = V,pex [A@) A f(,9)], Yy € V.
(2) The preimage of B wunder f, denoted by
L(B) is a fuzzy set in X defined by

f7H(B)(x) =

-
Vyey [BW)Af(z,y)], Vo € X

The following are the immediate results of Result 2.A
and Definition 2.6.

Proposition 2.7. Let f: X - Y andg:Y — Z
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be fuzzy mappings w.r.t. Ex € E(X). Ey € E(Y)
and Ez € E(Z), and let A € IX. Then (go f)(A) =
9(f(A)).

Proposition 2.8. (1) Ix '(A) = A, VA € I,

(2) Let f : X — Y and g : Y — Z be fuzzy
mappings w.rt. Exy € E(X),Ey € E(Y) and
Ez € E(Z). Then (go f)~YA) = (f~tog H(A) =
f7He™H(A4)), vA e IZ.

Result 2.E [2, Proposition 2.5]. Let f : X — Y be
a fuzzy mapping w.r.t. Ex € E(X) and Ey € E(Y),
let A€ X and let B e IY.

(1) If f is strong, then A C f=1(f(A)).

(2) It EX = Ix and f is injective, then
f7HfA) C
(3) If fis strong surJectlve then B C f(f~1(B)).

)
(4) If By = Iy, then f(f~1(B)) C B.
Result 2.F [2, Proposition 2.6]. Let f : X — Y be
a fuzzy mapping w.r.t. Ex € E(X) and Ey € E(Y),
let A€ X and let B e IY.
(1) If Ex = Ix and f is injective, then f(A°) C
[F(A)"

e

(2)

(3) If f is strong, then [f
)

(4 If Ey = Yy, then f

If f is strong surJectlve then [f(A)]¢ C f(A°).
HB)Je C fHB).
H(Be) C [fHB))

Result 2.G [2, Proposition 2.7]. Let f: X — Y be
a fuzzy mapping w.r.t. Ex € E(X) and Ey € E(Y),
let {A,:a €T} CI* andlet {B,:aecl}CIY.
(1) f(UaeF a) Uagf‘ f(AOt)
(2) " (Uaer Ba) = Uger £71(Ba).
3) f(nael" Aa) CNaer F(A )
(4) f ( aGFB ) - ﬂaGFf ( )
(5) If A, C Ag for o, B €T, then f(A,) C f(Ap).
(6) If
B

B, C Bg for a,p € T, thenf YBa) C

1

—~

f=H(Bp)-
(7) f Ex = Ix and f is injective,
Naer f(Aa) C f(Naer 4a)-
®) I By = Iy,
f 1(ﬂa€FBa)'

then

then ﬂaerf_l(ﬁa) C

3. Vague continuous, open and closed
mappings

The fuzzy point in X with support © € X and value
X € Iy [resp. A € Ing |, denoted by xy, is a fuzzy set
in X defined by

2a(y) = Aif y=uz,
M=V 0 if y£z, Ve X.



We will denote the set of all the fuzzy points in X
as F,(X). Let z\ € F,(X) and let A € IX. Then )
is said to belong to A, denoted by zx €1 A [5] [resp.
x\ €2 AB]if A < A(x) [resp. A < A(x)]. In this paper
ry € A will stand for either x) €1 A or x), €5 A.

Definition 3.1 [3]. Let z € F,(X) and let A,B €
IX. Then :

(1) x is said to be quasi-coincident with A, de-
noted by zxgA, if A > A%(x) or A+ A(x) > 1.

(2) A is said to be quasi-coincident with B, de-
noted by A¢B, if 3z € X such that A(x) > B°(x) or
A(x) + B(z) > 1. In this case, we say that A and B
are quasi-coincident(with each other) at x.

(3) A and B are said to be intersecting if 3z € X
such that (AN B)(z) # 0. In this case, we say that A
and B intersect at x.

It is clear that if A and B are quasi-coincident at z,
then A and B intersect at x.

Result 3.A [3, Proposition 2.1]. Let A,B € I¥
and let xx € F,(z). Then A C B if and only if AGB°,
i.e., A and B¢ are not quasi-coincident. In particular,
Ty €2 A if and only if z)gA°.

Result 3.B [3, Proposition 2.3]. Let {A, : a €
I'} € IX and let z\ € Fy(X). Then 2xq(Uyer 4a) if
and only if Ja € T such that x)qA,.

Proposition 3.2. Let f : X — Y be a strong fuzzy
mapping w.r.t. Ex € E(X) and Ey € E(Y), let
AcIX andlet BeI".

(1) For each z) € F,(X), f(zx) € F,(Y) and
f(xa) = (f(@))x

(2) If f(zx)gB, V) € Fy(X), then zxqf~(B).

(3) If zxgA, V) € F,(X), then f(xx)gqf(A).

Proof. (1) By Definition 2.6, for each y € Y,

F@n)y) = V.exlzaz) A f(z9)]
=AA f(‘I) y)
Since f is strong, Jyp € Y such that f(z,yo) = 1.
Thus f(zx)(yo) = A and yo = f(z). Hence yor =
(f(@))r = f(zx).
(2) Suppose f(zx)gB. Since f(zx) = yox for some
yo €Y by (1), Ao + B(yo) > 1 and f(z,yo) = 1. Thus
A f7HB) (@) = A+V ey [BU)Af (2,)]
= A"‘B(yg) > 1.
Hence zxqf~(B).
(3) Suppose zxgA. Then A+ A(z) > 1. By (1),
Jyo € Y such that f(z)) = yox and f(z,y0) = 1. Thus
A+ F(A)(g0) = AV e [A() A £z, 10)
=+ A(z) A f(z,y0)
=+ A(z) > 1.

Vague Continuous Mappings

Hence f(z))qf(A). O

In 1968, Chang [1] defines a fuzzy topology on X as
a subset 7 C IX such that
()0, X eT,
(i) VA,BeT,ANB €T,
(iii) V{Aa ta €T} C T,Uper Aa € T.

Each member of 7 is called a fuzzy open set in X.
A fuzzy set A € IX is called closed in X if A° is open
in X, i.e., A° € 7. The pair (X,7) is called a fuzzy
topological space(in short, fts).

For a fts X, we will denote the set of all fuzzy open
sets [resp. closed sets] in X as FO(X)[resp. FC(X)].

Definition 3.3 [3]. Let (X,7) be a fts, let A € IX
and let z) € F,(X).

(1) A is called a neighborhood(for short, nbd) of
if 3B € 7 such that ), € B C A.

(2) A is called a Q-neighborhood(for short, Q-nbd)
of z if 3B € 7 such that z,¢B C A.

The set of all the nbds[resp. Q-nbds] of x, is called
the system of nbds[resp. @-nbds | of x) and will be
denoted by Ng(zy)[resp. No(zy)].

Result 3.C [3, Proposition 2.4]. Let(X,7) be
a fts. Then B C 7 is a base for 7 if and only if
Vo) € F,(X), V open Q-nbd U of zy, 3B € B such
that z xgB C U.

Result 3.D [6, Theorem 3.2]. Let (X,7) be a
fts and let A € IX. Then A € 7 if and only if
V) € Fp(X) with zxqA, A € No(z»).

Definition 3.4. Let f: (X,7T) — (Y,U) a fuzzy map-
ping w.r.t. Ex € E(X) and Ey € E(Y). Then f is
said to be :

(1) vague continuous if f~'(B) € T,VB € U,

(2) vague open if f(A) e U, VA € S,

(3) vague closed if f(A¢) eU, VA €T,

(4) a vague homeomorphism if it is bijective, con-
tinuous and open.

The following is the immediate result of Definition
3.4.

Proposition 3.5. Let f : X — Y be a fuzzy mapping
w.rt. Ex € E(X) and Ey € E(Y).

(1) If X is a fuzzy discrete space, then f is vague
continuous.

(2) f'Y is a fuzzy indiscrete space, then f is vague
continuous.

(3) If X and Y are fuzzy discrete spaces, then f is
vague continuous and open.
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The following is the immediate result of Definition
3.4 and Propositions 2.7 and 2.8.

Proposition 3.6. (1) The identity fuzzy mapping
Ix : X — X is vague continuous.

(2) Let f: X — Y and g : Y — Z be fuzzy map-
pings w.r.t. Ex € E(X), Ey € E(Y) and Ez € E(Z).
If f and g are vague continuous [resp. open and
closed], then go f is vague continuous [resp. open and
closed).

The following is the immediate result of Definition
3.4 and Result 2. F.

Proposition 3.7. Let f : X — Y be strong w.r.t.
Ex € E(X) and By = Iy € E(Y). Then f is
vague continuous if and only if f~1(A) € FO(X),
VA € FO(Y).

Theorem 3.8. Let f (X, 7) — (Y,U) be
strong wr.t. Ex € E(X) and Ey = Iy € E(Y).
Then f is continuous if and only if Vo, € F,(X),
VB € N(f(zy)), 3A € N(z,) such that ) € A and
f(A) C B.

Proof. (=): Suppose f is vague continuous. Let
)y € F,(X) and let B be B € N(f(z))) . Then
3C € U such that f(xz)) € C C B. Since f is vague
continuous and strong, f~1(C) € 3 and

zx € f7H(f(z2) € f7HC) C f7H(B).(by
Result 2.E(1) and 2.G(6))
Let A = f~1(C). Then clearly A € N(z)) and
zy € A C f71(B). Since Ey = Iy, by Results 2.
E(4) and 2. G(5), f(A) C f(f~%(B)) C B.

(«<): Suppose the necessary condition holds and
let B € U. If f~Y(B) = 0, then it is obvious.
Suppose xx € f~Y(B). Then it is easily seen that
B € N(f(zy)). By the hypothesis,

JA,, € N(zy) such that z\ € A,, and f(A4,,) C
B.

Since A;, € N(z)) and f is strong, 3C,, € 7 such
that x) € Cpy, C Ay, C F7Hf(ALy)) C f7H(B).
Thus

f7HB) =U{ax o € fH(B)}

cU{C,, €T}

C f~YB).
So f7YB) =U{Cs, €T : 25 € f~1(B)} € T. Hence
f is vague continuous. (]

Definition 3.9 [3]. Let (X,7) be a fts.
(1) A subfamily B of T is called a base for T if
VA e T,3 B 4 C Bsuch that A = Ba.
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(2) A subfamily S of 7 is called a subbase for 7T if
the family B = {(|F is a finite subset of S} is a base
for 7.

(3) (X,7) is said to satisfies the second aziom of
countability or is said to be a Cy; space if T has a
countable base.

The following is the immediate result of Definition
3.9 and Result 2.F.

Theorem 3.10. Let f: (X,7) — (Y,7) be strong
wrt. Ex € E(X) and Ey = Iy € E(Y). Then f is
vague continuous if and only if f=*(V) € T for each
member V' of a subbase S for U.

Definition 3.11 [3]. Let D be a nonempty set and
let < be a semi-order on D.

(1) The pair (D, <) is called a directed set, directed
by <, if Vm,n € D,3dp € D such that m < p and
n < p.

(2) S'is called a fuzzy net in X if S : D — F,(X) is
an(ordinary) mappings, where D is a directed set by
<. In this case, for n € D, S(n) is often denoted by S,
and hence a net S is usually denoted by {S,, : n € D}.

Definition 3.12 [3]. Let S = {S, : n € D} be a
fuzzy net in X and let A € IX. Then S is said to be :

(1) quasi-coincident with A if Yn € D, S,,qA.

(2) eventually quasi-coincident with A if 3m € D
such that Vn € D with n > m, S,qA.

(3) frequently quasi-coincident with A if Ym €
D, 3n € D such that n > m and S,,¢A.

(4)in AifYne D, S, € A.

Definition 3.13 [3]. Let S be a fuzzy net in a
fts (X,7) and let xx € F,(X). Then S is said to
converge to x) in X relative to 7 if S is eventually
quasi-coincident with each @-nbd of x}.

Proposition 3.14. Let f : X — Y be strong and
strong surjective w.r.t. Ex € E(X) and Iy € E(Y).
Consider the following statements :

(1) f is vague continuous.

(2) For each zy € F,(X) and each V €
No(f(za)),3U € Ng(zy) such that f(U) C V.

(3) For each fuzzy net S in X, if S converges to
zy € Fp(X), then T = {f(S,) : n € D} is a fuzzy net
in Y and converges to f(zx). Then (1) = (2) = (3).

Proof. (1) = (2): Suppose f is continuous. Let
zy € F,(X) and let V. € Ng(f(zy)). Since f is
strong, by Proposition 3.2(1), Jy € Y such that
f(z,y) = 1 and f(zx) = yn € Fp(Y). Since V €
Ng(f(za)), by Definition 3.3, 3B € FO(Y') such that
f(zx)gB C V. By proposition 3.2(2) and Result



2.G, zxqfH(B) C f~Y(V). Since f is vague contin-
uous, f'7(B) € (X) Let f~%(V) = U. Since
aaqf~H(B) C f7HV),

A+U(z) =X+ fH(V)()

AV V() A (@, 2)]
=X+ V(y) [Sincef(z,y) = 1]
> 1.
Thus U € Ng(zy). Since Ey = Iy, by Result 2.E(4),
f(U) = f(f~1(V)) Cc V. This completes the proof.
(2) = (3) : Suppose the condition (2) holds and for
each fuzzy net S in X, suppose S converges to z) €
F,(X). Then, by Proposition 3.2(1), f(S,) € F,(Y).
Thus T is a fuzzy net in Y. Let V € Ng(f(zy)). Then,
by the condition (2),
AU € Ng(z») such thatf(U) C V.
Thus, by the hypothesis and Definition 3.13,
Im € D ‘such that Vn € D withn > m, S, qU.
By Proposition 3.2(3), f(Sn)qf(U) C V. So f(Sn)qV
Hence T is converges to f(A). O

Definition 3.15 [3].
A€ I¥. Then :
(1) The union of all the T-open sets contained in
A is called the interior of A, denoted by A or IntrA.
(2) The intersection of all the 7-closed sets con-
taining A is called the closure of A, denoted by A or
CZTA.

Let (X,7) be a fts and let

It is clear that A°[resp. A] is the largest open set
contained in A [resp. the smallest closed set contain-

ing A] and (A°)° = A° [resp. (j) =A].

Result 3.E [3, Propositions 4.1 and 4.1’ ].

(1) ) € A° if and only if ) has a nbd contained
in A.

(2) z) € A if and only if VA, YV € Ng(zy).

Result 3.G [3, Theorem 4.2]. A°
((A9)°)7, (A)F = (A%)°, A° = (4°)°.

Result 3.F [6, Theorem 3.1]. Let X be a fts, let
z\ € Fp(X) and let A € IX. If AgM,M € Ng(z))
then z, € A.

= (A°)e, A =

Theorem 3.16. Let f : X — Y be strong w.r.t.
Ex € E(X)and Ey = Iy € E(Y), let A € I’ and let
B € IY. Then the following are equivalent :

(1) f is vague continuous.

(2) f(A) C f(A).
(3) f71(B) C fH(B).
(4) f7H(B°) C (fF7H(B))".

Proof.(1) = (2) : Suppose f is vague continu-
ous. Since f(A) is closed in Y, by Proposition 3.7,

Vague Continuous Mappings

f7Y(f(A)) is closed in X. Then, by Result 2.E(1),
Acf LF(A) = F1(f(4)

T < I (7).
Since Ey = Iy, by Result 2.E(4), L
F(A) C £ (A < FCA).
(2) = (3) : Suppose the condition (2) holds. Since
f is strong surjective and Fy = IY, by Result 2.E,
and the condition (2),

J(7(B) C T(f(B)) = B.
Since f is strong, by Result 2.E (1),
FUB) C F(UBY) € FM(B).
(3) = (4) : Suppose the condition (3) holds. Then,
by the condition (3), f~1(B¢) C f~'(B¢). By Results
3.G and 2.F,
| fHBe) =B = [(f~H(B)]
“H(Be) = fTH(BO)) = [f (B
Thus [f~YB°)c. So f~YB°) C

o

[(f1(B))°]° C
(f=H(B))°.

(4) = (1) : Suppose the condition (4) holds.
Let U € FO(Y). Then, by the condition (4),
fHU°) c (f~Y(U))°. Since U € FO(Y), U = U°.
Thus f~1(U) c (f~Y(U))°. Since (f~1(U))° is the
largest open fuzzy set in X contained in f~1(U),
(f~HU))° € f7HU). So f7HU) = (f7HU))°, Le.,
f~Y(U) € T. Hence f is vague continuous. This com-
pletes the proof. O

The conditions in Theorem 3.16 are not equivalent
to the condition (f(A))° C f(A°) for each A € IX, in
general.

Example 3.16. (1) Let X = {7, v} and let A,B €
IX be defined as

A(7) = 0.3, A(v
0.3, B(v)=0.
Let 7; = {0,X,A} and let 7o = {0, X,B}. Then
clearly 7; and 75 are fuzzy topologies on X. Let
Ey: X xX —Tand Fy : X x X — I be mappings

) = 0.3, B(77) =

defined by
E1 ] L5
7 1 04
v |04 1,
E2 ] L
) 1 0
v |0 1

Then clearly Ey, E; € E(X). Consider the fuzzy rela-
tion f on X x X defined as follows :

f17 v

701 0

v |1 0.
Then f: (X,7;) — (X, T5) is strong w.r.t. By € B(X)
and Fy = Ix € E(X). Thus f~}(0) =0, f~}(X)=X
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and f~'(B) = A are open in (X,7;). So f is vague
continuous. On the other hand, (f(B))° = B° = B
n (X,73) and f(B°) = f(0) = 0 in (X,7;). Thus
(F(B))° & F(BY).

(2) Let X = {7, v} and let A € I’X be defined
by A(77) = 0.4 and A(v) = 1. Let 7; = {0, X} and
let 75 = {0, X, A}. Then clearly 7; and 75 are fuzzy
topologies on X. Let F; and Es be fuzzy equalities
defined in (1). Also let f: (X,77) — (X, 73) be fuzzy
mapping defined in (1). Then f(B)(v+) = 0. Thus
(f(B))° = 0 C f(B°). But f~!(A) is not open in
(X,71). So f is not vague continuous. O

However, if a fuzzy mapping f has some conditions,
then we have the following result.

Theorem 3.17. Let f: X — Y be strong and strong
bijective w.rt. Ex = Ix € E(X) and Ey = Iy €
E(Y). Then the following are equivalent :
(1) f is vague continuous.
(2) /(A) € [(A), VA € I,
(3) f~X(B) C f~1(B), VB e I".
(4) 1 (B°) C (f1(B)°, VB e IV,
(5) (F(A)° C F(A°), VA € ¥,

Proof. By Theorem 3.16, it suffices to show that (4)
< (5).

(4) = (5) : Suppose the condition (4) holds and
let A€ IX. Then f(A) € IY. Thus, by the condition
(4),

FUFA)) € (£ (A,
Since f is strong, injective and Ex = Ix, by Result
2.E,

FUFA®) © (T (F(AY)° = A°.

FUFHf(A))°) € £(A°).
Since f is strong surjective and Fy = Iy, by Result
2.E,

Thus

(f(A))° = F(f7H(F(A))°) C f(A°).
(5) = (4) : Suppose the condition (5) holds and let
B € IY. Then f~(B) € IX. Then, by the condition

(),
(f(f71(B)))° C F(FH(B))".

Since f is strong surjective and Fy = Iy, by Result

2.E,
Be = (f(f~1(B)))° C f(f(B))°.
Since f is strong, injective and Ex = Ix, by Result
2.E,
f7HBe) C FHA(FH(B))°) = (FH(B))°.
This completes the proof. O

Proposition 3.18. Let f : X — Y be strong w.r.t.
Ex € E(X) and By = Iy € E(Y). If f is vague open,
then f~Y(B) C f~%(B), VB e I¥.
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Proof. Suppose f is vague open. Let B € IY and
let zy € f~1(B). Since f is strong, 3y € Y such that
f(z,y) = 1 and y\ = f(z)). Let V € Ng(zy). Then
U € FO(X) such that xxqU C V. By Proposition
3.2 (3), yx = f(zx)gf(U) C f(V). Since f is vague
open, f( ) € FO(Y'). Thus f(V) € Ng(f(xx)). Since
z) € f71(B) and Ey = Iy, by Result 2.E(4),

u = f(ax) € S(f(B)) C B.
By Result 3.E(2), f(V)¢B. Thus Jyg € Y such
that f(V)(yo) + B(yo) > 1. Let € > 0 such that
F(V)(yo) + B(yo) — e > 1. Since

fV)(wo) = Vex[V(x) A fz,90)],
Jdzp € X such that f(V)(yo) —e < V(zo) A f(z0,30) <
V(xp). For this zp € X,

f7HB) (o) = V.ey[B(2) A f(wo,2)] = B(yo) A

f(@o,yo).
Then

V(o) +f H(B)(wo) > f(V)(yo) — € + B(yo) > 1.
Thus qu '(B). So, by Result 3.E(2), zx € f~1(B).
Hence f~*(B) ¢ f~Y(B) . |

The following is the immediate result of Theorem
3.16 and Proposition 3.18.

Corollary 3.18. Let f : X — Y be strong w.r.t.
Ex € E(X) and By = Iy € E(Y). If fis vague open
and continuous then f~1(B) = f~1(B),VB € I".

Theorem 3.19. Let f : X — Y be strong w.r.t.
Ex € E(X) and Ey = Iy € E(Y). Then the follow-
ing are equivalent :

(1) f is vague open.

(2) F(A°) C (f(A))°, VA € I*.

(3) (f~(B))F C f~\(B°), VB eIV,

Proof. (1) = (2) : Suppose f is vague open and let
A € I, Then clearly A° € FO(X). Since f is vague
open, f(A°) € FO(Y). Thus f(A°) = (f(A°))° C

(F(A))°.

(2) = (3) : Suppose the condition (2) holds and
let B € IY. Then f~'(B) € IX. Thus, by condition
@),

FUFHB))Y) C (F(F7H(B)))°
Since Ey = Iy, by Result 2.E(4), f(f~%(B)) C B.
So f(f~*(B))°) C B°. Since f is strong, by Result

2.E(1),
(f7HB))° C fHF(F7H(B))°) C f7H(B).

(3) = (1) : Suppose the condition (3) holda and
let U € FO(X). Then U° =U and f(U) € IY. Thus,
by condition (3), (f~'(f(U)))° € f~(f ( )°.
Since f is strong, U = U° C (f~YHfU)))° c
FHf))e.
Since Ey = Iy, f(U) C f(f~
f(U).

HFW))°) € (FU))° €



Thus f(U) = (f(U))°. So f(U) € FO(Y). Hence f is
vague open. O

Theorem 3.20. Let f: X — Y be a fuzzy mapping
wr.t. Ex € E(X) and By € E(Y). Then f is vague
closed if and only if f(A) C f(A), VA € IX.

Proof. (=) : Suppose [ is vague closed and let
A € IX. Then clearly A € FC(X). Since f is vague
closed, f(A) € FC(Y). Thus f(A) C f(A) = f(A).

(<) : Suppose the necessary condition holds and
let A€ FC(X). Then A = A. By the hypothesis,

f(A) C f(A) = f(A) C f(A).

Thus f(A) = f(A). So f(A) € FC(X). Hence f is
vague closed. |

The following is the immediate result of Theorems
3.16 and 3.20. The conditions in Theorem 3.20 are not
equivalent to the condition f~1(B) ¢ f~1(B), VB €
IV, in general.

Corollary 3.20. Let f : X — Y be strong w.r.t.
Ex € E(X) and Iy € E(Y). Then f is vague contin-
uous and closed iff f(A) = f(A), VA € I'X.
Example 3.20. (1) Let X = {7, v} and let A,B
and C be fuzzy sets in X defined as follows :
A(7)=0.3, A(v) =0.3,
B(7)=0.3, B(v) =0,
Cc(7)=1, C(v)=0.
Let 71 = {0, X, A°} and let 75 = {0, X, B¢, C°}. Then
clearly 7; and 75 are fuzzy topologies on X. Let
Fy: X xX — [ and Es : X x X — I be mappings
defined as follows :

E1 -
-7 1 0.4
v |04 1,
Es -7 v
) 1 06
v |06 1.

Then clearly Eq, Es, € E(X). Consider the fuzzy rela-
tion f on X x X defined as follows :

fl17 u

711 0

v |1 0.

Then it is easily seen that f : (X,77) — (X,7T2)
is a fuzzy mapping w.r.t. Ep,Es € E(X). Then
f(® =0, f(X) = C and f(A) = B are closed in
(X,73). Thus f is vague closed. On the other hand,

1A = f_l(XZZ X in (X,75) and f~1(A) = A in
(X.T1). So f7H(A) £ f~1(A).

(2) Let X = {77, v} and let A € I* be defined
by A(7)=0, A(v)=1

Vague Continuous Mappings

Let 77 = {0,X} and let 7o = {0,X,A°}. Then
clearly 7; and 75 are fuzzy topologies on X. Let
f:(X,71) — (X,73) be a fuzzy mapping w.r.t. E
and Es defined in (1), respectively. Let B be any fuzzy
set in (X, 73).
Suppose B(7) = 0. Then

FU(B) = 1(4) =0 c TI(B).
Suppose B(77) # 0. Then f~ ( ) # 0.
7(B) ¢ X = F1(B).
So, in either case, f~1(B) C f~1(B),VB € I*. On
the other hand, f(X) = A€ is not closed in (X,73).
Thus f is not vague closed. O

Thus

However, if f has a fuzzy mapping with some condi-
tions, then obtain the following result.

Theorem 3.21. Let f: X — Y be strong and strong
bijective w.rt. Ex = Ix € E(X) and Ey = Iy €
E(Y). Then the following are equivalent :

(1) f is vague closed.

(2) f(A) C f(A), Ve T*.

(3) f~YB)c f~YB),VBeI¥.

Proof. By Theorem 3.17, it is sufficient to show that

(2) & (3).
(2)=(3):

let B € IY. Then clearly f~

Suppose the condition (2) holds and
Y(B) € IX. Thus, by the
condition (2),

fF(F=H(B)) C F(f~H(B)).

Since f is strong surjective and Fy = Iy, by Result

2.E,
B=f(f~1B)) C f(f~1(B)).
Since f is strong, injective and EFx = Ix, by Result
2.E,
f7UB) C fUf(fH(B))) = fH(B).

(3) = (2) : Suppose the condition (3) holds and
let A € IX. Then clearly f(A) € IY. Thus, by the
condition (3),

— =1
FHFA) CF o (f(A)).
Since f is strong, injective and Ex = Ix, by Result
2.E,

_ fTHF(A)) C FH(f(A) = A
So f(f~1(f(A))) C f(A). Since f is strong surjective
and Fy = Iy, by Result 2.E, B
f(A) = f(f~1(f(A)) C f(A).
This completes the proof. O

The following is the immediate result of Theorems
3.17, 3.19 and 3.21.

Theorem 3.22. Let f: X — Y be strong and strong
bijective w.r.t. Ix € E(X) and Iy € E(Y). Then the
following are equivalent :

(1) f is a vague homeomorphism.
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is vague continuous and open.
(A) = f(A), VA € IX.
f-1(B)=f""(B).BeI".
FUBY) = (f (B, VB e IV,
f(A))° = f(A°), VA e I".

=

—~~

Proposition 3.23. Let f : X — Y be strong
and strong bijective w.r.t. Ex = Ix € E(X) and
Ey € E(Y). If f is vague continuous, then (f(4))° C
f(A°),VA € TX,

Proof. Let A € IX. Then clearly (f(A))° €
FO(Y). Since f is vague continuous f~*((f(4))°) €
FO(X). By Results 2.E and 2.G(6), f~*((f(4))°) C
F~YH(f(A)) = A. Since A° is the largest open set in X
contained in A, f~1((f(A))°) € A°. So, by Results
2.E and 2.G(5), (f(A4))° C f(A°).

The following is the immediate result of Proposition
3.23 and Theorem 3.19.

Corollary 3.23. Let f : X — Y be strong and
strong bijective w.r.t. Ix € E(X) and Ey € E(Y).
If f is vague continuous and open, then f(A°) =
(f(A))°, VA € IX.

Proposition 3.24. Let X be a fts, let f : X — Y
be a strong fuzzy mapping w.r.t. Ex € E(X) and
By =Iy € E(Y),and let U = {U € IY : f71(U) €

1)

2) f is vague continuous.

3) If 7 is a fuzzy topology on Y such that f : X —
(Y, T) is vague continuous, then 7 C U.

Proof. (1) Clearly f~'(0) = 0 € FO(X) and
FU(Y) =X € FO(X). Then 0,Y € U. Let U,V € U.
Then f~1(U), f~1(V) € FO(X). Since Ey = Iy, Re-
sult 2.G, f~YHu) A f7H(V) = fFHUNV) € FOX).
Thus UNV € U. Now let {Uq }aer CU. Then clearly
[ (Us) € FO(X),Va €T and f~(U,er Ua)- Since
Uner /- 1(Ua) € FO(X), [ (Uner Us) € FO(X).
So Uper Ua € U. Hence U is a fuzzy topology on Y.

(2) It is obvious from the definition of U.

(3) Let U € T. Since f: X — (Y, T) is vague con-
tinuous, f~1(U) € FO(X). Thus, by the definition of
U UeclU. SoT CU. O

Proposition 3.25. Let Y be a fts, let f : X — YV
be a strong fuzzy mapping w.r.t. Ex € E(X) and
Ey =1y € E(Y),and let T = {U € IX : 3V €
Y)such thatU = f~1(V)}.

7T is a fuzzy topology on X.
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Proof. (1) Clearly f~}(Y) = X and f~1(0) = 0.
Since 0,Y € FO(Y), 0,X € T. Let U,V € T.
Then, 34, B € FO(Y) such that f~1(A) = U and
f~Y(B)=V. Thus ANB € FO(Y) and f~'(ANB) =
1 A)Nf~YB) =UNV, by Result 2.G. SoUNV € 7.
Now let {Uy}aer € 7 Then U, € T, Va € T'. Thus,
Va € T, 3A, € FO(Y) such that U, = f~}(Aa).
Thus f_l(UaeF An) = UaGF f_l(Aa) = UaGF Ua
and (J,ep Ao € FO(Y). So UyerUa € 7. Hence
T is a fuzzy topology on X.

(2) It is clear from the definition of 7.

(3) Let U € 7. Then 3V € FO(Y) such that
U= f~YV). Since f: (X,U) — Y is vague continu-
ous, f7(V) €Y. Thus U € U. Hence T C U. a
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