Fuzzy β -(r, s)-Open Sets in Smooth Bitopological Spaces

Seung On Lee¹ and Eun Pyo Lee²

¹ Department of Mathematics, Chungbuk National University, Cheongju 361-763, Korea
 ² Department of Mathematics, Seonam University, Namwon 590-711, Korea

Abstract

We introduce and investigate the concepts of $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy β -(r, s)-open sets, $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy β -(r, s)-closed sets and fuzzy pairwise β -(r, s)-continuous mappings in smooth bitopological spaces.

Key Words : fuzzy β -(r, s)-open sets, fuzzy β -(r, s)-closed sets, fuzzy pairwise β -(r, s)-continuous mappings

1. Introduction

The concept of fuzzy sets was introduced by Zadeh [12] in his classical paper. Using the concept of fuzzy sets, Chang [2] was the first to introduce the concept of a fuzzy topology on a set X by axiomatizing a collection Tof fuzzy subsets of X, where he referred to each member of T as an open set. In his definition of fuzzy topology, fuzziness in the concept of openness of a fuzzy subset was absent. These spaces and its generalizations are later studied by several authors, one of which, developed by Šostak [11], used the idea of degree of openness. This type of generalization of fuzzy topological spaces was later rephrased by Chattopadhyay, Hazra, and Samanta [3], and by Ramadan [9]. Kandil [4] introduced and studied the notion of fuzzy bitopological spaces as a natural generalization of fuzzy topological spaces. Lee [5] introduced the concept of smooth bitopological spaces as a generalization of smooth topological spaces and Kandil's fuzzy bitopological spaces.

In this paper, we introduce the concepts of $(\mathcal{T}_i, \mathcal{T}_j)$ fuzzy β -(r, s)-open sets and fuzzy pairwise β -(r, s)continuous mappings in smooth bitopological spaces and then we investigate some of their characteristic properties.

2. Preliminaries

Let *I* be the closed unit interval [0, 1] of the real line and let I_0 be the half open interval (0, 1] of the real line. For a set *X*, I^X denotes the collection of all mapping from *X* to *I*. A member μ of I^X is called a fuzzy set of *X*. By $\tilde{0}$ and $\tilde{1}$ we denote constant mappings on *X* with value 0 and 1, respectively. For any $\mu \in I^X$, μ^c denotes the complement $\tilde{1} - \mu$. All other notations are the standard notations

¹This work was supported by the research grant of the Chungbuk

National University in 2009.

²Corresponding author: Eun Pyo Lee

of fuzzy set theory.

A Chang's fuzzy topology on X [2] is a family T of fuzzy sets in X which satisfies the following properties:

- (1) $\tilde{0}, \tilde{1} \in T$.
- (2) If $\mu_1, \mu_2 \in T$ then $\mu_1 \wedge \mu_2 \in T$.
- (3) If $\mu_k \in T$ for all k, then $\bigvee \mu_k \in T$.

The pair (X,T) be called a *Chang's fuzzy topological space*. Members of T are called T-fuzzy open sets of X and their complements T-fuzzy closed sets of X.

A system (X, T_1, T_2) consisting of a set X with two Chang's fuzzy topologies T_1 and T_2 on X is called a *Kandil's fuzzy bitopological space*.

A smooth topology on X is a mapping $\mathcal{T} : I^X \to I$ which satisfies the following properties:

- (1) $T(\tilde{0}) = T(\tilde{1}) = 1.$
- (2) $\mathcal{T}(\mu_1 \wedge \mu_2) \geq \mathcal{T}(\mu_1) \wedge \mathcal{T}(\mu_2).$
- (3) $\mathcal{T}(\bigvee \mu_i) \ge \bigwedge \mathcal{T}(\mu_i).$

The pair (X, \mathcal{T}) is called a *smooth topological space*. For $r \in I_0$, we call μ a \mathcal{T} -fuzzy r-open set of X if $\mathcal{T}(\mu) \geq r$ and μ a \mathcal{T} -fuzzy r-closed set of X if $\mathcal{T}(\mu^c) \geq r$.

A system $(X, \mathcal{T}_1, \mathcal{T}_2)$ consisting of a set X with two smooth topologies \mathcal{T}_1 and \mathcal{T}_2 on X is called a *smooth bitopological space*. Throughout this paper the indices i, jtake values in $\{1, 2\}$ and $i \neq j$.

Let (X, \mathcal{T}) be a smooth topological space. Then it is easy to see that for each $r \in I_0$, an *r*-cut

$$\mathcal{T}_r = \{ \mu \in I^X \mid \mathcal{T}(\mu) \ge r \}$$

is a Chang's fuzzy topology on X.

Manuscript received Jan. 4, 2010; revised Mar. 11, 2010; Accepted Mar. 15, 2010.

Let (X,T) be a Chang's fuzzy topological space and $r \in I_0$. Then the mapping $T^r: I^X \to I$ is defined by

$$T^{r}(\mu) = \begin{cases} 1 & \text{if } \mu = \tilde{0}, \tilde{1}, \\ r & \text{if } \mu \in T - \{\tilde{0}, \tilde{1}\}, \\ 0 & \text{otherwise} \end{cases}$$

becomes a smooth topology.

Hence, we obtain that if $(X, \mathcal{T}_1, \mathcal{T}_2)$ is a smooth bitopological space and $r, s \in I_0$, then $(X, (\mathcal{T}_1)_r, (\mathcal{T}_2)_s)$ is a Kandil's fuzzy bitopological space. Also, if (X, T_1, T_2) is a Kandil's fuzzy bitopological space and $r, s \in I_0$, then $(X, (\mathcal{T}_1)^r, (\mathcal{T}_2)^s)$ is a smooth bitopological space.

Definition 2.1. [5] Let (X, \mathcal{T}) be a smooth topological space. For each $r \in I_0$ and for each $\mu \in I^X$, the \mathcal{T} -fuzzy *r*-closure is defined by

$$\mathcal{T}\text{-}\mathrm{Cl}(\mu,r) = \bigwedge \{\rho \in I^X \mid \mu \leq \rho, \mathcal{T}(\rho^c) \geq r\}$$

and the T-fuzzy r-interior is defined by

$$\mathcal{T}\text{-}\mathrm{Int}(\mu,r) = \bigvee \{\rho \in I^X \mid \mu \ge \rho, \mathcal{T}(\rho) \ge r\}.$$

Lemma 2.2. [5] Let μ be a fuzzy set of a smooth topological space (X, \mathcal{T}) and let $r \in I_0$. Then we have:

(1)
$$\mathcal{T}$$
-Cl $(\mu, r)^c = \mathcal{T}$ -Int (μ^c, r) .

(2)
$$\mathcal{T}$$
-Int $(\mu, r)^c = \mathcal{T}$ -Cl (μ^c, r) .

Definition 2.3. [5, 6] Let μ be a fuzzy set of a smooth bitopological space $(X, \mathcal{T}_1, \mathcal{T}_2)$ and $r, s \in I_0$. Then μ is said to be

- (1) a $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy (r, s)-semiopen set if $\mu \leq \mathcal{T}_j$ -Cl $(\mathcal{T}_i$ -Int $(\mu, r), s)$,
- (2) a (T_i, T_j)-fuzzy (r, s)-semiclosed set if T_j-Int(T_i-Cl(μ, r), s) ≤ μ,
- (3) a $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy (r, s)-preopen set if $\mu \leq \mathcal{T}_i$ -Int $(\mathcal{T}_j$ -Cl $(\mu, s), r)$,
- (4) a $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy (r, s)-preclosed set if \mathcal{T}_i -Cl $(\mathcal{T}_i$ -Int $(\mu, s), r) \le \mu$.

Definition 2.4. [5, 6] Let $f : (X, \mathcal{T}_1, \mathcal{T}_2) \to (Y, \mathcal{U}_1, \mathcal{U}_2)$ be a mapping from a smooth bitopological space X to a smooth bitopological space Y and $r, s \in I_0$. Then f is called

(1) a fuzzy pairwise (r, s)-continuous mapping if the induced mapping $f : (X, \mathcal{T}_1) \to (Y, \mathcal{U}_1)$ is fuzzy rcontinuous and the induced mapping $f : (X, \mathcal{T}_2) \to (Y, \mathcal{T}_2)$ is fuzzy s-continuous,

- (2) a fuzzy pairwise (r, s)-semicontinuous mapping if f⁻¹(μ) is a (T₁, T₂)-fuzzy (r, s)-semiopen set of X for each U₁-fuzzy r-open set μ of Y and f⁻¹(ν) is a (T₂, T₁)-fuzzy (s, r)-semiopen set of X for each U₂-fuzzy s-open set ν of Y,
- (3) a fuzzy pairwise (r, s)-precontinuous mapping if f⁻¹(μ) is a (T₁, T₂)-fuzzy (r, s)-preopen set of X for each U₁-fuzzy r-open set μ of Y and f⁻¹(ν) is a (T₂, T₁)-fuzzy (s, r)-preopen set of X for each U₂fuzzy s-open set ν of Y.

3.
$$(\mathcal{T}_i, \mathcal{T}_j)$$
-fuzzy β - (r, s) -open sets

Definition 3.1. Let μ be a fuzzy set of a smooth bitopological space $(X, \mathcal{T}_1, \mathcal{T}_2)$ and $r, s \in I_0$. Then μ is said to be

Theorem 3.2. Let μ be a fuzzy set of a smooth bitopological space $(X, \mathcal{T}_1, \mathcal{T}_2)$ and $r, s \in I_0$. Then the following statements are equivalent:

(1) μ is a $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy β -(r, s)-open set.

(2) μ^c is a $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy β -(r, s)-closed set.

Proof. It follows from Lemma 2.2.

Remark 3.3. It is clear that every $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy (r, s)-semiopen set is a $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy β -(r, s)-open set and every $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy (r, s)-preopen set is a $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy β -(r, s)-open set. However, the following example show that all of the converses need not be true.

Example 3.4. Let $X = \{x, y\}$ and $\mu_1, \mu_2, \mu_3, \mu_4, \mu_5$ and μ_6 be fuzzy sets of X defined as

$$\mu_1(x) = 0.4, \quad \mu_1(y) = 0.7;$$

$$\mu_2(x) = 0.1, \quad \mu_2(y) = 0.2;$$

$$\mu_3(x) = 0.8, \quad \mu_3(y) = 0.5;$$

$$\mu_4(x) = 0.8, \quad \mu_4(y) = 0.1;$$

$$\mu_5(x) = 0.7, \quad \mu_5(y) = 0.6;$$

and

 $\mu_6(x)=0.5, \quad \mu_6(y)=0.2.$ Define $\mathcal{T}_1:I^X\to I$ and $\mathcal{T}_2:I^X\to I$ by

$$\mathcal{T}_{1}(\mu) = \begin{cases} 1 & \text{if } \mu = \tilde{0}, \tilde{1} \\ \frac{1}{2} & \text{if } \mu = \mu_{1}, \\ 0 & \text{otherwise;} \end{cases}$$

and

$$\mathcal{T}_2(\mu) = \left\{ \begin{array}{ll} 1 & \text{if } \mu = \tilde{0}, \tilde{1} \\ \frac{1}{3} & \text{if } \mu = \mu_2, \\ 0 & \text{otherwise.} \end{array} \right.$$

Then clearly $(\mathcal{T}_1, \mathcal{T}_2)$ is a smooth bitopology on X. The fuzzy set μ_3 is $(\mathcal{T}_1, \mathcal{T}_2)$ -fuzzy β - $(\frac{1}{2}, \frac{1}{3})$ -open which is not $(\mathcal{T}_1, \mathcal{T}_2)$ -fuzzy $(\frac{1}{2}, \frac{1}{3})$ -semiopen and μ_4 is a $(\mathcal{T}_2, \mathcal{T}_1)$ -fuzzy β - $(\frac{1}{3}, \frac{1}{2})$ -open set which is not a $(\mathcal{T}_2, \mathcal{T}_1)$ -fuzzy $(\frac{1}{3}, \frac{1}{2})$ -semiopen set. Also, μ_5 is a $(\mathcal{T}_1, \mathcal{T}_2)$ -fuzzy β - $(\frac{1}{2}, \frac{1}{3})$ -open set which is not a $(\mathcal{T}_2, \mathcal{T}_1)$ -fuzzy β - $(\frac{1}{2}, \frac{1}{3})$ -open set which is not a $(\mathcal{T}_1, \mathcal{T}_2)$ -fuzzy $(\frac{1}{2}, \frac{1}{3})$ -open set and μ_6 is a $(\mathcal{T}_2, \mathcal{T}_1)$ -fuzzy β - $(\frac{1}{3}, \frac{1}{2})$ -open set which is not a $(\mathcal{T}_2, \mathcal{T}_1)$ -fuzzy $(\frac{1}{3}, \frac{1}{2})$ -open set.

Theorem 3.5. (1) Any union of $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy β -(r, s)-open sets is a $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy β -(r, s)-open set.

(2) Any intersection of $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy β -(r, s)-closed sets is a $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy β -(r, s)-closed set.

Proof. (1) Let $\{\mu_k\}$ be a collection of $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy β -(r, s)-open sets. Then for each $k, \mu_k \leq \mathcal{T}_j$ -Cl $(\mathcal{T}_i$ -Int $(\mathcal{T}_j$ -Cl $(\mu_k, s), r), s)$. So

$$\bigvee \mu_k \leq \bigvee \mathcal{T}_j \text{-Cl}(\mathcal{T}_i \text{-Int}(\mathcal{T}_j \text{-Cl}(\mu_k, s), r), s)$$
$$\leq \mathcal{T}_j \text{-Cl}(\mathcal{T}_i \text{-Int}(\mathcal{T}_j \text{-Cl}(\bigvee \mu_k, s), r), s).$$

Thus $\bigvee \mu_k$ is a $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy β -(r, s)-open set. (2) It follows from (1) using Theorem 3.2.

Theorem 3.6. Let μ be a $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy β -(r, s)-open and $(\mathcal{T}_j, \mathcal{T}_i)$ -fuzzy (s, r)-semiclosed set. Then μ is a $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy (r, s)-semiopen set.

Proof. Let μ be a $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy β -(r, s)-open and $(\mathcal{T}_j, \mathcal{T}_i)$ -fuzzy (s, r)-semiclosed set. Since μ is $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy β -(r, s)-open, $\mu \leq \mathcal{T}_j$ -Cl $(\mathcal{T}_i$ -Int $(\mathcal{T}_j$ -Cl $(\mu, s), r), s)$. Also since μ is $(\mathcal{T}_j, \mathcal{T}_i)$ -fuzzy (s, r)-semiclosed, $\mu \geq \mathcal{T}_i$ -Int $(\mathcal{T}_j$ -Cl $(\mu, s), r)$. Thus

$$\begin{split} \mu &\leq \mathcal{T}_{j}\text{-}\mathrm{Cl}(\mathcal{T}_{i}\text{-}\mathrm{Int}(\mathcal{T}_{j}\text{-}\mathrm{Cl}(\mu,s),r),s) \\ &= \mathcal{T}_{j}\text{-}\mathrm{Cl}(\mathcal{T}_{i}\text{-}\mathrm{Int}(\mathcal{T}_{i}\text{-}\mathrm{Int}(\mathcal{T}_{j}\text{-}\mathrm{Cl}(\mu,s),r),r),s) \\ &\leq \mathcal{T}_{j}\text{-}\mathrm{Cl}(\mathcal{T}_{i}\text{-}\mathrm{Int}(\mu,r),s). \end{split}$$

Hence μ is a $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy (r, s)-semiopen set. \Box

Theorem 3.7. Let μ be a $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy β -(r, s)-closed and $(\mathcal{T}_j, \mathcal{T}_i)$ -fuzzy (s, r)-semiopen set. Then μ is a $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy (r, s)-semiclosed set.

Proof. Let μ be a $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy β -(r, s)-closed and $(\mathcal{T}_j, \mathcal{T}_i)$ -fuzzy (s, r)-semiopen set. Since μ is $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy β -(r, s)-closed, $\mu \geq \mathcal{T}_j$ -Int $(\mathcal{T}_i$ -Cl $(\mathcal{T}_j$ -Int $(\mu, s), r), s)$. Also since μ is $(\mathcal{T}_j, \mathcal{T}_i)$ -fuzzy (s, r)-semiopen, $\mu \leq \mathcal{T}_i$ -Cl $(\mathcal{T}_j$ -Int $(\mu, s), r)$. Thus

$$\begin{split} \mu &\geq \mathcal{T}_j \text{-} \text{Int}(\mathcal{T}_i \text{-} \text{Cl}(\mathcal{T}_j \text{-} \text{Int}(\mu, s), r), s) \\ &= \mathcal{T}_j \text{-} \text{Int}(\mathcal{T}_i \text{-} \text{Cl}(\mathcal{T}_i \text{-} \text{Cl}(\mathcal{T}_j \text{-} \text{Int}(\mu, s), r), r), s) \\ &\geq \mathcal{T}_j \text{-} \text{Int}(\mathcal{T}_i \text{-} \text{Cl}(\mu, r), s). \end{split}$$

Hence μ is a $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy (r, s)-semiclosed set.

4. Fuzzy pairwise β -continuous mappings

Definition 4.1. Let $f : (X, \mathcal{T}_1, \mathcal{T}_2) \to (Y, \mathcal{U}_1, \mathcal{U}_2)$ be a mapping from a smooth bitopological space X to a smooth bitopological space Y and $r, s \in I_0$. Then f is called

- a fuzzy pairwise β-(r, s)-continuous mapping if f⁻¹(μ) is a (T₁, T₂)-fuzzy β-(r, s)-open set of X for each U₁-fuzzy r-open set μ of Y and f⁻¹(ν) is a (T₂, T₁)-fuzzy β-(s, r)-open set of X for each U₂fuzzy s-open set ν of Y,
- (2) a *fuzzy pairwise* β-(r, s)-open mapping if f(ρ) is a (U₁, U₂)-fuzzy β-(r, s)-open set of Y for each T₁-fuzzy r-open set ρ of X and f(λ) is a (U₂, U₁)-fuzzy β-(s, r)-open set of Y for each T₂-fuzzy s-open set λ of X,
- (3) a fuzzy pairwise β-(r, s)-closed mapping if f(ρ) is a (U₁, U₂)-fuzzy β-(r, s)-closed set of Y for each T₁fuzzy r-closed set ρ of X and f(λ) is a (U₂, U₁)fuzzy β-(s, r)-closed set of Y for each T₂-fuzzy sclosed set λ of X.

Theorem 4.2. Let $(X, \mathcal{T}_1, \mathcal{T}_2)$, $(Y, \mathcal{U}_1, \mathcal{U}_2)$ and $(Z, \mathcal{V}_1, \mathcal{V}_2)$ be smooth bitopological spaces and let $f : X \to Y$ and $g : Y \to Z$ be mappings and $r, s \in I_0$. Then the following statements are true.

- (1) If f is fuzzy pairwise β -(r, s)-continuous and g is fuzzy pairwise (r, s)-continuous then $g \circ f$ is fuzzy pairwise β -(r, s)-continuous.
- (2) If f is fuzzy pairwise (r, s)-open and g is fuzzy pairwise β-(r, s)-open then g o f is fuzzy pairwise β-(r, s)-open.
- (3) If f is fuzzy pairwise (r, s)-closed and g is fuzzy pairwise β-(r, s)-closed then g o f is fuzzy pairwise β-(r, s)-closed.

Theorem 4.3. Let $(X, \mathcal{T}_1, \mathcal{T}_2)$ and $(Y, \mathcal{U}_1, \mathcal{U}_2)$ be smooth bitopological spaces and let $r, s \in I_0$. Then f: $(X, \mathcal{T}_1, \mathcal{T}_2) \rightarrow (Y, \mathcal{U}_1, \mathcal{U}_2)$ is a fuzzy pairwise β -(r, s)continuous mapping if and only if $f : (X, (\mathcal{T}_1)_r, (\mathcal{T}_2)_s) \rightarrow$ $(Y, (\mathcal{U}_1)_r, (\mathcal{U}_2)_s)$ is a fuzzy pairwise β -continuous mapping. Proof. Let $\mu \in (\mathcal{U}_1)_r$ and $\nu \in (\mathcal{U}_2)_s$. Then $\mathcal{U}_1(\mu) \geq r$ and $\mathcal{U}_2(\nu) \geq s$ and hence μ is a \mathcal{U}_1 -fuzzy r-open set and ν is a \mathcal{U}_2 -fuzzy s-open set of Y. Since $f : (X, \mathcal{T}_1, \mathcal{T}_2) \rightarrow (Y, \mathcal{U}_1, \mathcal{U}_2)$ is a fuzzy pairwise β -(r, s)-continuous mapping, $f^{-1}(\mu)$ is a $(\mathcal{T}_1, \mathcal{T}_2)$ -fuzzy β -(r, s)-open set and $f^{-1}(\nu)$ is a $(\mathcal{T}_2, \mathcal{T}_1)$ -fuzzy β -(s, r)-open set of $(X, \mathcal{T}_1, \mathcal{T}_2)$. So $f^{-1}(\mu)$ is $((\mathcal{T}_1)_r, (\mathcal{T}_2)_s)$ -fuzzy β -open and $f^{-1}(\nu)$ is $((\mathcal{T}_2)_s, (\mathcal{T}_1)_r)$ -fuzzy β -open of $(X, (\mathcal{T}_1)_r, (\mathcal{T}_2)_s)$. Thus $f : (X, (\mathcal{T}_1)_r, (\mathcal{T}_2)_s) \rightarrow (Y, (\mathcal{U}_1)_r, (\mathcal{U}_2)_s)$ is a fuzzy pairwise β -continuous mapping.

Conversely, let μ be any \mathcal{U}_1 -fuzzy r-open set and ν any \mathcal{U}_2 -fuzzy s-open set of $(Y, \mathcal{U}_1, \mathcal{U}_2)$. Then $\mathcal{U}_1(\mu) \geq r$ and $\mathcal{U}_2(\nu) \geq s$. So $\mu \in (\mathcal{U}_1)_r$ and $\nu \in (\mathcal{U}_2)_s$. Since $f : (X, (\mathcal{T}_1)_r, (\mathcal{T}_2)_s) \to (Y, (\mathcal{U}_1)_r, (\mathcal{U}_2)_s)$ is a fuzzy pairwise β -continuous mapping, $f^{-1}(\mu)$ is a $((\mathcal{T}_1)_r, (\mathcal{T}_2)_s)$ fuzzy β -open set and $f^{-1}(\nu)$ is a $((\mathcal{T}_2)_s, (\mathcal{T}_1)_r)$ -fuzzy β open set of $(X, (\mathcal{T}_1)_r, (\mathcal{T}_2)_s)$. So $f^{-1}(\mu)$ is a $(\mathcal{T}_1, \mathcal{T}_2)$ fuzzy β -(r, s)-open set and $f^{-1}(\nu)$ is a $(\mathcal{T}_2, \mathcal{T}_1)$ -fuzzy β -(s, r)-open set of $(X, \mathcal{T}_1, \mathcal{T}_2)$. Thus $f : (X, \mathcal{T}_1, \mathcal{T}_2) \to$ $(Y, \mathcal{U}_1, \mathcal{U}_2)$ is a fuzzy pairwise β -(r, s)-continuous mapping. \Box

Theorem 4.4. Let (X, T_1, T_2) and (Y, U_1, U_2) be Kandil's fuzzy bitopological spaces and let $r, s \in I_0$. Then $f : (X, T_1, T_2) \rightarrow (Y, U_1, U_2)$ is a fuzzy pairwise β -continuous mapping if and only if $f : (X, (T_1)^r, (T_2)^s) \rightarrow (Y, (U_1)^r, (U_2)^s)$ is a fuzzy pairwise β -(r, s)-continuous mapping.

Proof. Let μ be a $(U_1)^r$ -fuzzy r-open set and ν a $(U_2)^s$ -fuzzy s-open set of $(Y, (U_1)^r, (U_2)^s)$. Then $(U_1)^r(\mu) \ge r$ and $(U_2)^s(\nu) \ge s$, and hence $\mu \in U_1$ and $\nu \in U_2$. Since $f : (X, T_1, T_2) \to (Y, U_1, U_2)$ is a fuzzy pairwise β -continuous mapping, $f^{-1}(\mu)$ is a (T_1, T_2) -fuzzy β -open set and $f^{-1}(\nu)$ is a (T_2, T_1) -fuzzy β -open set of (X, T_1, T_2) . So $f^{-1}(\mu)$ is a $((T_1)^r, (T_2)^s)$ -fuzzy β -(r, s)-open set of $(X, (T_1)^r, (T_2)^s)$. Thus $f : (X, (T_1)^r, (T_2)^s) \to (Y, (U_1)^r, (U_2)^s)$ is a fuzzy pairwise β -(r, s)-continuous mapping.

Conversely, let $\mu \in U_1$ and $\nu \in U_2$. Then $(U_1)^r(\mu) \ge r$ and $(U_2)^s(\nu) \ge s$, and hence μ is a $(U_1)^r$ -fuzzy r-open set and ν is a $(U_2)^s$ -fuzzy s-open set of Y. Since $f : (X, (T_1)^r, (T_2)^s) \to (Y, (U_1)^r, (U_2)^s)$ is a fuzzy pairwise β -(r, s)-continuous mapping, $f^{-1}(\mu)$ is a $((T_1)^r, (T_2)^s)$ -fuzzy β -(r, s)-open set and $f^{-1}(\nu)$ is a $((T_2)^s, (T_1)^r)$ -fuzzy β -(s, r)-open set of $(X, (T_1)^r, (T_2)^s)$. So $f^{-1}(\mu)$ is a (T_1, T_2) -fuzzy β -open set and $f^{-1}(\nu)$ is a (T_2, T_1) -fuzzy β -open set of (X, T_1, T_2) . Thus $f : (X, T_1, T_2) \to (Y, U_1, U_2)$ is a fuzzy pairwise β -continuous mapping. \Box

Theorem 4.5. Let $f : (X, \mathcal{T}_1, \mathcal{T}_2) \to (Y, \mathcal{U}_1, \mathcal{U}_2)$ be a mapping and $r, s \in I_0$. Then the following statements are equivalent:

(1) f is a fuzzy pairwise β -(r, s)-continuous mapping.

- (2) f⁻¹(μ) is a (T₁, T₂)-fuzzy β-(r, s)-closed set of X for each U₁-fuzzy r-closed set μ of Y and f⁻¹(ν) is a (T₂, T₁)-fuzzy β-(s, r)-closed set of X for each U₂-fuzzy s-closed set ν of Y.
- (3) For each fuzzy set μ of Y,

$$\begin{split} f^{-1}(\mathcal{U}_1\text{-}\mathrm{Cl}(\mu, r)) \\ \geq \mathcal{T}_2\text{-}\mathrm{Int}(\mathcal{T}_1\text{-}\mathrm{Cl}(\mathcal{T}_2\text{-}\mathrm{Int}(f^{-1}(\mu), s), r), s) \end{split}$$

and

$$f^{-1}(\mathcal{U}_2\text{-}\mathrm{Cl}(\mu, s))$$

$$\geq \mathcal{T}_1\text{-}\mathrm{Int}(\mathcal{T}_2\text{-}\mathrm{Cl}(\mathcal{T}_1\text{-}\mathrm{Int}(f^{-1}(\mu), r), s), r).$$

(4) For each fuzzy set ρ of X,

$$\begin{aligned} \mathcal{U}_1\text{-}\mathrm{Cl}(f(\rho), r) \\ \geq f(\mathcal{T}_2\text{-}\mathrm{Int}(\mathcal{T}_1\text{-}\mathrm{Cl}(\mathcal{T}_2\text{-}\mathrm{Int}(\rho, s), r), s)) \end{aligned}$$

and

$$\mathcal{U}_{2}\text{-}\mathrm{Cl}(f(\rho), s) \geq f(\mathcal{T}_{1}\text{-}\mathrm{Int}(\mathcal{T}_{2}\text{-}\mathrm{Cl}(\mathcal{T}_{1}\text{-}\mathrm{Int}(\rho, r), s), r))$$

Proof. (1) \Leftrightarrow (2) It follows from Theorem 3.2.

(2) \Rightarrow (3) Let μ be any fuzzy set of Y. Then \mathcal{U}_1 -Cl(μ, r) is a \mathcal{U}_1 -fuzzy r-closed set and \mathcal{U}_2 -Cl(μ, s) is a \mathcal{U}_2 -fuzzy s-closed set of Y. By (2), $f^{-1}(\mathcal{U}_1$ -Cl(μ, r)) is a $(\mathcal{T}_1, \mathcal{T}_2)$ -fuzzy β -(r, s)-closed set and $f^{-1}(\mathcal{U}_2$ -Cl(μ, s)) is a $(\mathcal{T}_2, \mathcal{T}_1)$ -fuzzy β -(s, r)-closed set of X. Thus

$$\begin{split} f^{-1}(\mathcal{U}_1\text{-}\mathrm{Cl}(\mu, r)) \\ &\geq \mathcal{T}_2\text{-}\mathrm{Int}(\mathcal{T}_1\text{-}\mathrm{Cl}(\mathcal{T}_2\text{-}\mathrm{Int}(f^{-1}(\mathcal{U}_1\text{-}\mathrm{Cl}(\mu, r)), s), r), s) \\ &\geq \mathcal{T}_2\text{-}\mathrm{Int}(\mathcal{T}_1\text{-}\mathrm{Cl}(\mathcal{T}_2\text{-}\mathrm{Int}(f^{-1}(\mu), s), r), s) \end{split}$$

and

$$\begin{split} f^{-1}(\mathcal{U}_2\text{-}\mathrm{Cl}(\mu,s)) \\ &\geq \mathcal{T}_1\text{-}\mathrm{Int}(\mathcal{T}_2\text{-}\mathrm{Cl}(\mathcal{T}_1\text{-}\mathrm{Int}(f^{-1}(\mathcal{U}_2\text{-}\mathrm{Cl}(\mu,s)),r),s),r)) \\ &\geq \mathcal{T}_1\text{-}\mathrm{Int}(\mathcal{T}_2\text{-}\mathrm{Cl}(\mathcal{T}_1\text{-}\mathrm{Int}(f^{-1}(\mu),r),s),r). \end{split}$$

(3) \Rightarrow (4) Let ρ be any fuzzy set of X. Then $f(\rho)$ is a fuzzy set of Y. By (3),

$$f^{-1}(\mathcal{U}_1\text{-}\mathrm{Cl}(f(\rho), r))$$

$$\geq \mathcal{T}_2\text{-}\mathrm{Int}(\mathcal{T}_1\text{-}\mathrm{Cl}(\mathcal{T}_2\text{-}\mathrm{Int}(f^{-1}f(\rho), s), r), s)$$

$$\geq \mathcal{T}_2\text{-}\mathrm{Int}(\mathcal{T}_1\text{-}\mathrm{Cl}(\mathcal{T}_2\text{-}\mathrm{Int}(\rho, s), r), s)$$

and

$$f^{-1}(\mathcal{U}_2\text{-}\mathrm{Cl}(f(\rho), s))$$

$$\geq \mathcal{T}_1\text{-}\mathrm{Int}(\mathcal{T}_2\text{-}\mathrm{Cl}(\mathcal{T}_1\text{-}\mathrm{Int}(f^{-1}f(\rho), r), s), r))$$

$$\geq \mathcal{T}_1\text{-}\mathrm{Int}(\mathcal{T}_2\text{-}\mathrm{Cl}(\mathcal{T}_1\text{-}\mathrm{Int}(\rho, r), s), r).$$

Hence

$$\begin{aligned} \mathcal{U}_{1}\text{-}\mathrm{Cl}(f(\rho),r) &\geq ff^{-1}(\mathcal{U}_{1}\text{-}\mathrm{Cl}(f(\rho),r)) \\ &\geq f(\mathcal{T}_{2}\text{-}\mathrm{Int}(\mathcal{T}_{1}\text{-}\mathrm{Cl}(\mathcal{T}_{2}\text{-}\mathrm{Int}(\rho,s),r),s)) \end{aligned}$$

and

$$\begin{aligned} \mathcal{U}_2\text{-}\mathrm{Cl}(f(\rho),s) &\geq ff^{-1}(\mathcal{U}_2\text{-}\mathrm{Cl}(f(\rho),s))\\ &\geq f(\mathcal{T}_1\text{-}\mathrm{Int}(\mathcal{T}_2\text{-}\mathrm{Cl}(\mathcal{T}_1\text{-}\mathrm{Int}(\rho,r),s),r)). \end{aligned}$$

(4) \Rightarrow (2) Let μ be any \mathcal{U}_1 -fuzzy r-closed set and ν any \mathcal{U}_2 -fuzzy s-closed set of Y. Then $f^{-1}(\mu)$ and $f^{-1}(\nu)$ are fuzzy sets of X. By (4),

$$\begin{split} \mu &= \mathcal{U}_1\text{-}\mathrm{Cl}(\mu, r) \\ &\geq \mathcal{U}_1\text{-}\mathrm{Cl}(ff^{-1}(\mu), r) \\ &\geq f(\mathcal{T}_2\text{-}\mathrm{Int}(\mathcal{T}_1\text{-}\mathrm{Cl}(\mathcal{T}_2\text{-}\mathrm{Int}(f^{-1}(\mu), s), r), s)) \end{split}$$

and

$$\begin{split} \nu &= \mathcal{U}_2\text{-}\mathrm{Cl}(\nu, s) \\ &\geq \mathcal{U}_2\text{-}\mathrm{Cl}(ff^{-1}(\nu), s) \\ &\geq f(\mathcal{T}_1\text{-}\mathrm{Int}(\mathcal{T}_2\text{-}\mathrm{Cl}(\mathcal{T}_1\text{-}\mathrm{Int}(f^{-1}(\nu), r), s), r)). \end{split}$$

Thus

$$\begin{split} f^{-1}(\mu) &\geq f^{-1}f(\mathcal{T}_2\text{-Int}(\mathcal{T}_1\text{-}\mathrm{Cl}(\mathcal{T}_2\text{-Int}(f^{-1}(\mu),s),r),s)) \\ &\geq \mathcal{T}_2\text{-Int}(\mathcal{T}_1\text{-}\mathrm{Cl}(\mathcal{T}_2\text{-Int}(f^{-1}(\mu),s),r),s) \end{split}$$

and

$$\begin{aligned} f^{-1}(\nu) &\geq f^{-1}f(\mathcal{T}_1\text{-}\mathrm{Int}(\mathcal{T}_2\text{-}\mathrm{Cl}(\mathcal{T}_1\text{-}\mathrm{Int}(f^{-1}(\nu), r), s), r)) \\ &\geq \mathcal{T}_1\text{-}\mathrm{Int}(\mathcal{T}_2\text{-}\mathrm{Cl}(\mathcal{T}_1\text{-}\mathrm{Int}(f^{-1}(\nu), r), s), r). \end{aligned}$$

Therefore $f^{-1}(\mu)$ is a $(\mathcal{T}_1, \mathcal{T}_2)$ -fuzzy β -(r, s)-closed set and $f^{-1}(\nu)$ is a $(\mathcal{T}_2, \mathcal{T}_1)$ -fuzzy β -(s, r)-closed set of X.

Acknowledgements

This work was supported by the research grant of the Chungbuk National University in 2009.

References

- K. K. Azad, "On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity," *J. Math. Anal. Appl.*, vol. 82, pp. 14-32, 1981.
- [2] C. L. Chang, "Fuzzy topological spaces," J. Math. Anal. Appl., vol. 24, pp. 182-190, 1968.

- [3] K. C. Chattopadhyay, R. N. Hazra, and S. K. Samanta, "Gradation of openness : Fuzzy topology," *Fuzzy Sets* and Systems, vol. 49, 237-242, 1992.
- [4] A. Kandil, "Biproximities and fuzzy bitopological spaces," *Simon Stevin*, vol. 63, pp. 45-66. 1989.
- [5] E. P. Lee, "Pairwise semicontinuous mappings in smooth bitopological spaces," *Journal of Fuzzy Logic* and Intelligent Systems, vol. 12, pp. 268-274, 2002.
- [6] E. P. Lee, "Preopen sets in smooth bitopological spaces," *Commun. Korean Math. Soc.*, vol. 18, pp. 521-532, 2003.
- [7] S. O. Lee and E. P. Lee, "Fuzzy strongly (r, s)semiopen sets," *International J. Fuzzy Logic and Intelligent Systems*, vol. 6, pp. 299-303, 2006.
- [8] J. H. Park and B. Y. Lee, "Fuzzy semi-preopen sets and fuzzy semi-precontinuous mappings," *Fuzzy Sets* and Systems, vol. 67, pp. 359-364, 1994.
- [9] A. A. Ramadan, "Smooth topological spaces", *Fuzzy* Sets and Systems, vol. 48, pp. 371-375, 1992.
- [10] S. Sampath Kumar, "Semi-open sets, semi-continuity and semi-open mappings in fuzzy bitopological spaces," *Fuzzy Sets and Systems*, vol. 64, pp. 421-426, 1994.
- [11] A. P. Šostak, "On a fuzzy topological structure," Suppl. Rend. Circ. Matem. Janos Palermo, Sr. II, vol. 11, pp. 89-103, 1985.
- [12] L. A. Zadeh, "Fuzzy sets," *Information and Control*, vol. 8, pp. 338-353, 1965.

Seung On Lee

Professor of Chungbuk National University E-mail : solee@chungbuk.ac.kr

Eun Pyo Lee

Professor of Seonam University E-mail : eplee55@paran.com Corresponding author