DOI QR코드

DOI QR Code

Application of CRAMPS for a Phase Transition in H+-ion irradiated TlH2PO4

  • Kim, Se-Hun (Faculty of Science Education, Jeju National University) ;
  • Han, J.H. (Department of Physics and Institute for Nano Science, Korea University) ;
  • Lee, Cheol-Eui (Department of Physics and Institute for Nano Science, Korea University) ;
  • Lee, Kwang-Sei (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University) ;
  • Kim, Chang-Sam (Advanced Battery Center, Korea Institute of Science and Technology) ;
  • Dalal, N.S. (Department of Chemistry and NHMFL, Florida State University) ;
  • Han, Doug-Young (Analytical Research Group-Seoul Center, Korea Basic Science Institute)
  • Received : 2010.10.29
  • Accepted : 2010.12.09
  • Published : 2010.12.20

Abstract

We studied the hydrogen-bonded $TlH_2PO_4$ (TDP) ferroelectrics treated with the proton-beam bombardment. The TDP material was irradiated with 1-MeV proton beam at a dose of $10^{15}/cm^2$. In order to analyze the hydrogen environment in TDP, we carried out the $^1H$ high resolution nuclear magnetic resonance (NMR) - i.e., Combined Rotation And Multiple Pulse Spectroscopy (CRAMPS) measurement. The isotropic chemical shift of hydrogen indicates its displacive property is related to the $PO_4$ lattice deformation which occurs throughout the antiferroelectric-, the ferroelastic- and the paraelastic-phase transitions. The temperature dependence of $\sigma_{iso}$ reveals the electronic charge redistribution is induced by the proton-beam irradiation and the elastic property.

Keywords

References

  1. R. Blinc and B. Zeks, Ferroelectrics 72, 193. (1987). https://doi.org/10.1080/00150198708017947
  2. A. Bussmann-Holder, N. Dalal, R. Fu, and R. Migoni, J. Phys.: Condens. Matter 13, L231. (2001). https://doi.org/10.1088/0953-8984/13/11/103
  3. R. J. Nelmes, G. M. Meyer and J. E. Tibballs, J. Phys. C: Solid State Phys. 15, 59. (1982) https://doi.org/10.1088/0022-3719/15/1/005
  4. R. J. Nelmes, W. F. Kuhs, C. J. Howard, T. E. Tibballs, and T. W. Ryan, J. Phys. C: Solid State Phys. 18, L711 (1985) https://doi.org/10.1088/0022-3719/18/24/001
  5. W. F. Kuhs, R. J. Nelmes, and J. E. Tibballs, J. Phys. C: Solid State Phys. 16, L1029 (1983) https://doi.org/10.1088/0022-3719/16/29/002
  6. S.H. Kim and D.Y. Han, J. Kor. Mag. Res. Soc. 12, 107. (2008).
  7. R. J. Nelmes and R. N. P. Choudhary, Solid State Commun. 38, 321. (1981). https://doi.org/10.1016/0038-1098(81)90471-3
  8. K. S. Lee, and D. H. Ha, Phys. Rev. B 48, 73. (1993). https://doi.org/10.1103/PhysRevB.48.73
  9. K. Irokawa, M. Komukae, T. Osaka, and Y. Makita, J. Phys. Soc. Jpn. 63, 1162. (1994). https://doi.org/10.1143/JPSJ.63.1162
  10. Q. Zhang, F. Chen, N. Kioussis, S. G. Demos, and H. B. Radousky, Phys. Rev. B 65, 024108. (2001). https://doi.org/10.1103/PhysRevB.65.024108
  11. S. Koval, J. Kohanoff, R. L. Migoni, and E. Tosatti, Phys. Rev. Lett. 89, 187602. (2002). https://doi.org/10.1103/PhysRevLett.89.187602
  12. J. Seliger, V. Zagar, R. Blinc, and V. H. Schmidt, J. Chem. Phys. 88, 3260. (1988). https://doi.org/10.1063/1.453921
  13. M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Oxford University Press, 1982).
  14. K. Deguchi, S. Azuma, Y. Kobayashi, S. Endo, and M. Tokunaga, Phys. Rev. B 69, 024106. (2004). https://doi.org/10.1103/PhysRevB.69.024106
  15. D. T. Vigren, Phys. Rev. B 25, 4804. (1982). https://doi.org/10.1103/PhysRevB.25.4804
  16. R. Blinc, Ferroelectrics 301, 3. (2004). https://doi.org/10.1080/00150190490464845
  17. N. Dalal, A. Klymachyov, and A. Bussmann-Holder, Phys. Rev. Lett. 81, 5924. (1998). https://doi.org/10.1103/PhysRevLett.81.5924
  18. A. Bussmann-Holder and K. H. Michel, Phys. Rev. Lett. 80, 2173. (1998). https://doi.org/10.1103/PhysRevLett.80.2173
  19. P. Mansfield, Phys. Rev. 137, 346. (1965). https://doi.org/10.1103/PhysRev.137.A346
  20. J. G. Powles, P. Mansfield, Phys. Rev. Lett. 2, 58. (1962). https://doi.org/10.1016/0031-9163(62)90147-6
  21. J. S. Waugh, L. M. Huber, U. Haeberlen, Phys. Rev. Lett. 20, 180. (1968). https://doi.org/10.1103/PhysRevLett.20.180
  22. W. K. Rhim, D. D. Elleman, R. W. Vaughan, J. Chem. Phys. 59, 3740. (1973). https://doi.org/10.1063/1.1680545
  23. J.H. Han, C.E. Lee, S.H. Kim, C.S. Kim, D.Y. Han, J. Kor. Mag. Res. Soc. 14, 38-44. (2010).
  24. J.W. Wiench, C.E. Bronimann, M. Pruski, 49th Rocky Mountain Conference on Analytical Chemistry (Breckenridge, 2007)
  25. S. H. Kim, K. W. Lee, B. H. Oh, J. J. Kweon, and C. E. Lee, Appl. Phys. Lett. 91, 122912. (2007) https://doi.org/10.1063/1.2784178
  26. S. H. Kim, K. W. Lee, B. H. Oh, C. E. Lee, and K. S. Hong, Phys. Rev. B 76, 172101. (2007). https://doi.org/10.1103/PhysRevB.76.172101
  27. D. P. Burum, and W. K. Rhim, J. Chem. Phys. 71, 944. (1979) https://doi.org/10.1063/1.438385
  28. A. Abragam, The principles of nuclear magnetism (Oxford University Press, New York, 1961).
  29. C. E. Lee, C. H. Lee, J. H. Kim, and K. S. Lee, Phys. Rev. Lett. 75, 3309. (1995). https://doi.org/10.1103/PhysRevLett.75.3309
  30. S. J. Kohler, J. D. Ellett, Jr., M. P. Klein, J. Chem. Phys. 64, 4451. (1976). https://doi.org/10.1063/1.432124
  31. P. M. Morse, Phys. Rev. 34, 57. (1929). https://doi.org/10.1103/PhysRev.34.57
  32. H. Eckert, J. P. Yesinowski, L. A. Silver, and E. M. Stolper, J. Phys. Chem. 92, 2055. (1988) https://doi.org/10.1021/j100318a070