DOI QR코드

DOI QR Code

Expression, Purification and NMR studies of SH3YL1 SH3 domain

  • Shrestha, Pravesh (Structural Biochemistry and Molecular Biophysics Laboratory, Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University) ;
  • Yun, Ji-Hye (Structural Biochemistry and Molecular Biophysics Laboratory, Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University) ;
  • Lee, Weon-Tae (Structural Biochemistry and Molecular Biophysics Laboratory, Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University)
  • Received : 2010.11.10
  • Accepted : 2010.12.09
  • Published : 2010.12.20

Abstract

SH3YL1, a novel protein containing one Src homology 3 domain at the carboxyl terminus was first detected in mouse anagen skin cDNA. This protein had a significant homology with YHRO 16c/Ysc 84, the yeast Src homology 3 domain-containing protein. The sequence identity was remarkable at the carboxyl and amino-terminal Src homology 3 domain, suggesting that the novel protein is a mouse homolog of the yeast protein and thus was termed as SH3YL1. SH3YL1 is composed of two domains, a DUF500 at N-termini and a SH3 domain at C-termini. In our study we cloned the SH3 domain in bacterial expression system in Escherichia coli using pET32a vector with TEV protease cleavage site and purified as a monomer using affinity chromatography. The N-terminal poly-Histidine tag was cleaved with TEV protease and target protein was used for backbone studies. Our study showed that SH3 domain primarily consists of $\beta$-sheet which is in consistence with previous result performed on the truncated SH3 domain of SH3YL1.

Keywords

References

  1. A. Noriaki, I. Kaoru, I. Masaaki, J. Investig. Dermatol. 114, 1050. (2000). https://doi.org/10.1046/j.1523-1747.2000.00971.x
  2. B. Botond, A. Robert, S. Klaus, H.K. Karl, J. Biol. Chem. 278, 6, 3510. (2003). https://doi.org/10.1074/jbc.C200613200
  3. T. Ryu, U. Noriko, K. Keiichiro, T. Masahiko, K. Motoyuki, I. Tomoko, N. Hiroyuki, S. Hideki, J. Biol. Chem. 278, 27, 25234. (2003). https://doi.org/10.1074/jbc.M212856200
  4. S. Hideki, U. Noriko, Y. Tomoko, T. Masahiko, T. Ryu, Jpn. J. Infect. Dis 57, 5, s24. (2004).
  5. D. Sujit, R. Katrin, PLoS ONE, 5, 5, 10478. (2010). https://doi.org/10.1371/journal.pone.0010478
  6. D.I. Brown, K.K. Griengling, Free Radic Biol. Med. 47, 1239. (2009). https://doi.org/10.1016/j.freeradbiomed.2009.07.023
  7. B. S. Renu, G. Joachim, M. Susanne, H. Silke, W. Dieter, Biol. Chem. 391, 33. (2010). https://doi.org/10.1515/BC.2010.003
  8. J.A. John, B. laurie, A.M. Jamie, E.S. Thomas, I.Y. Joanne, J. Biol. Chem. 285, 35455. (2010). https://doi.org/10.1074/jbc.M110.145102
  9. O. Kenji, N. Ikuo, Y. Satoru, T. Ryu, T. Shinnosuke, S. Kazuya, S. Hideki, I. Fuyuhiko, J. Biol. Chem. 281, 3660. (2006). https://doi.org/10.1074/jbc.M505193200
  10. B. Pierre, D. Frederic, T. C. R. Carine, Chim.11, 474. (2008). https://doi.org/10.1016/j.crci.2007.06.017
  11. M.L. Timothy, T.O. Edward, R.X. Olejniczak, W.F. Stephen, FEBS Lett. 314, 3, 413. (1992). https://doi.org/10.1016/0014-5793(92)81517-P
  12. G. Cornilescu, F. Delaglio, A. J. Bax, Biomol. NMR 13, 289. (1999). https://doi.org/10.1023/A:1008392405740