DOI QR코드

DOI QR Code

Cytoskeletal changes during nuclear and cell division in the freshwater alga Zygnema cruciatum (Chlorophyta, Zygnematales)

  • Yoon, Min-Chul (Korea Atomic Energy Research Institute, Advanced Radiation Technology Institute) ;
  • Han, Jong-Won (Department of Biology, Kongju National University) ;
  • Hwang, Mi-Sook (National Fisheries Research and Development Institute (NFRDI)) ;
  • Kim, Gwang-Hoon (Department of Biology, Kongju National University)
  • Received : 2010.10.11
  • Accepted : 2010.11.07
  • Published : 2010.12.01

Abstract

Cytoskeletal changes were observed during cell division of the green alga Zygnema cruciatum using flourescein isothiocynate (FITC)-conjugated phallacidin for F-actin staining and FITC-anti-$\alpha$-tubulin for microtubule staining. Z. cruciatum was uninucleate with two star-shaped chloroplasts. Nuclear division and cell plate formation occurred prior to chloroplast division. Actin filaments appeared on the chromosome and nuclear surface during prophase, and the F-actin ring appeared as the cleavage furrow developed. FITC-phallacidin revealed that actin filaments were attached to the chromosomes during metaphase. The F-actin ring disappeared at late metaphase. At telophase, FITC-phallacidin staining of actin filaments disappeared. FITC-anti-$\alpha$-tubulin staining revealed that microtubules were arranged beneath the protoplasm during interphase and then localized on the nuclear region at prophase, and that the mitotic spindle was formed during metaphase. The microtubules appeared between dividing chloroplasts. The results indicate that a coordination of actin filaments and microtubules might be necessary for nuclear division and chromosome movement in Z. cruciatum.

Keywords

References

  1. Bischoff, H. W. & Bold, H. C. 1963. Phycological studies IV. Some soil algae from enchanted rock and related algal species. The University of Texas Publications, Austin, TX, 95 pp.
  2. Cleary, A. L. & Mathesius, U. 1996. Rearrangements of F-actin during stomatogenesis visualised by confocal microscopy in fixed and permeabilised Tradescentia leaf epidermis. Bot. Acta 109:15-24. https://doi.org/10.1111/j.1438-8677.1996.tb00865.x
  3. Czaban, B. B. & Forer, A. 1994. Rhodamine-phalloidin and anti-tubulin antibody staining of spindle fibres that were irradiated with an ultraviolet microbeam. Protoplasma 178:18-27. https://doi.org/10.1007/BF01404117
  4. Garbary, D. J. & McDonald, A. R. 1996a. Actin rings in cytokinesis of apical cells in red algae. Can. J. Bot. 74:971-974. https://doi.org/10.1139/b96-121
  5. Garbary, D. J. & McDonald, A. R. 1996b. Fluorescent labelling of the cytoskeleton in Ceramium strictum (Rhodophyta). J. Phycol. 32:85-93. https://doi.org/10.1111/j.0022-3646.1996.00085.x
  6. Goto, Y. & Ueda, K. 1988. Microfilament bundles of F-actin in Spirogyra observed by fluorescence microscopy. Planta 173:442-446. https://doi.org/10.1007/BF00958955
  7. Grolig, F. 1990. Actin-based organelle movements in interphase Spirogyra. Protoplasma 155:29-42. https://doi.org/10.1007/BF01322613
  8. Hepler, P. K., Cleary, A. L., Gunning, B. E. S., Wadsworth, P., Wasteneys, G. O. & Zhang, D. H. 1993. Cytoskeletal dynamics in living plant cells. Cell Biol. Int. 17:127-142. https://doi.org/10.1006/cbir.1993.1050
  9. Karyophyllis, D., Katsaros, C. & Galatis, B. 2000. F-actin involvement in apical cell morphogenesis of Sphacelaria rigidula (Phaeophyceae): mutual alignment between cortical actin filaments and cellulose microfibrils. Eur. J. Phycol. 35:195-203. https://doi.org/10.1080/09670260010001735791
  10. Kim, G. H., Yoon, M. & Klotchkova, T. A. 2005. A moving mat: phototaxis in the filamentous green algae Spirogyra (Chlorophyta, Zygnemataceae). J. Phycol. 41:232-237. https://doi.org/10.1111/j.1529-8817.2005.03234.x
  11. Liu, B. & Palevitz, B. A. 1992. Organization of cortical microfilaments in dividing root cells. Cell Motil. Cytoskelet. 23:252-264 https://doi.org/10.1002/cm.970230405
  12. McCurdy, D. W. & Gunning, B. E. S. 1990. Reorganization of cortical actin microfilaments and microtubules at preprophase and mitosis in wheat root-tip cells: a double label immunofluorescence study. Cell Motil. Cytoskelet. 15:76-87. https://doi.org/10.1002/cm.970150204
  13. Menzel, D. & Schliwa, M. 1986. Motility in the siphonous green alga Bryopsis. II. Chloroplast movement requires organized arrays of both microtubules and actin filaments. Eur. J. Cell Biol. 40:286-295.
  14. Nagai, R. & Rebhun, L. I. 1966. Cytoplasmic microfilaments in streaming Nitella cells. J. Ultrastruct. Res. 14:571-589. https://doi.org/10.1016/S0022-5320(66)80083-7
  15. Panteris, E., Apostolakos, P. & Galatis, B. 1992. The organization of F-actin in root tip cells of Adiantum capillus veneris throughout the cell cycle. Protoplasma 170:128-137. https://doi.org/10.1007/BF01378788
  16. Sampson, K. & Pickett-Heaps, J. D. 2001. Phallacidin stains the kinetochore region in the mitotic spindle of the green alga Oedogonium spp. Protoplasma 217:166-176. https://doi.org/10.1007/BF01283397
  17. Sampson, K., Pickett-Heaps, J. D. & Forer, A. 1996. Cytochalasin D blocks chromosomal attachment to the spindle in the green alga Oedogonium. Protoplasma 192:130-144. https://doi.org/10.1007/BF01273885
  18. Schmit, A. C. & Lambert, A. M. 1987. Characterization and dynamics of cytoplasmic F-actin in higher plant endosperm cells during interphase, mitosis, and cytokinesis. J. Cell Biol. 105:2157-2166. https://doi.org/10.1083/jcb.105.5.2157
  19. Schmit, A. C. & Lambert, A. M. 1990. Microinjected fluorescent phalloidin in vivo reveals the F-actin dynamics and assembly in higher plant mitotic cells. Plant Cell 2:129-138. https://doi.org/10.1105/tpc.2.2.129
  20. Seagull, R. W., Falconer, M. M. & Weerdenburg, C. A. 1987. Microfilaments: dynamic arrays in higher plant cells. J. Cell Biol. 104:995-1004. https://doi.org/10.1083/jcb.104.4.995
  21. Shimmen, T. & Yokota, E. 1994. Physiological and biochemical aspects of cytoplasmic streaming. Int. Rev. Cytol. 155:97-139. https://doi.org/10.1016/S0074-7696(08)62097-5
  22. Suzuki, H., Oiwa, K., Yamada, A., Sakakibara, H., Nakayama, H. & Mashiko, S. 1995. Linear arrangement of motor protein on a mechanically deposited fluoropolymer thin film. Jpn. J. Appl. Phys. 34:3937-3941. https://doi.org/10.1143/JJAP.34.3937
  23. Traas, J. A., Doonan, J. H., Rawlins, D. J., Shaw, P. J., Watts, J. & Lloyd, C. W. 1987. An actin network is present in the cytoplasm throughout the cell cycle of carrot cells and associated with the dividing nucleus. J. Cell Biol. 105:387-395. https://doi.org/10.1083/jcb.105.1.387
  24. Wieland, T., Miura, T. & Seeliger, A. 1983. Analogs of phalloidin: D-Abu2-Lys7-phalloin, an F-actin binding analog, its rhodamine conjugate (RLP) a novel fluorescent F-actin-probe, and D-Ala2-Leu7-phalloin, an inert peptide. Int. J. Pept. Protein Res. 21:3-10. https://doi.org/10.1111/j.1399-3011.1983.tb03071.x

Cited by

  1. An ELIP-like gene in the freshwater green alga, Spirogyra varians (Zygnematales), is regulated by cold stress and CO2 influx vol.25, pp.5, 2013, https://doi.org/10.1007/s10811-013-9975-9
  2. The Evolution of Cell Division: From Streptophyte Algae to Land Plants vol.21, pp.10, 2016, https://doi.org/10.1016/j.tplants.2016.07.004
  3. Localisation and substrate specificities of transglycanases in charophyte algae relate to development and morphology vol.131, pp.2, 2018, https://doi.org/10.1242/jcs.203208