실규모 구획화재의 연소가스에 대한 혼합분율 분석

Mixture Fraction Analysis on the Combustion Gases of the Full-Scale Compartment Fires

  • 고권현 (동양대학교 건축소방행정학과) ;
  • 황철홍 (대전대학교 소방방재학과)
  • 투고 : 2010.08.17
  • 심사 : 2010.10.08
  • 발행 : 2010.10.31

초록

본 연구에서는 구획화재로부터 발생되는 화학종의 특성을 파악하기 위해서 혼합분율분석을 수행하였다. 메탄, 헵탄 그리고 톨루엔과 같은 탄화수소 연료들을 사용한 화재 실험이 ISO 9705 표준 화재실에서 수행되었으며 상층부의 두 지점에서 가스종 농도와 그을음(soot) 분율 등을 측정하였다. 미연탄화수소(UHC), 일산화탄소(CO), 이산화탄소($CO_2$), 산소($O_2$) 그리고 그을음 등의 측정된 화학종에 대한 질량분율을 혼합분율의 함수로 나타내었고, 탄화수소 연료의 이상적인 반응식에 기초한 상태 관계식과 비교 분석하였다. 혼합분율 분석은 다양한 화재 조건 및 측정 위치에서 얻은 수많은 측정데이터를 하나의 일관된 파라미터, 즉 혼합분율의 항으로 분류할 수 있게 하였다. 해석 결과를 통해 혼합분율 계산에 그을음을 고려하는 것이, 특히 헵탄이나 톨루엔과 같이 그을음 발생이 큰 연료의 경우 분석의 정확성을 향상시킴을 확인하였다.

In this study, a mixture fraction analysis was performed to investigate the characteristics of chemical species production in compartment fires burning hydrocarbon fuels such as methane, heptane, and toluene. A series of fire experiments was conducted in the ISO 9705 standard room, and gas species concentration and soot fraction were measured at two locations in the upper layer of the compartment. The mass fractions of measured chemical species, such as unburned hydrocarbons (UHC), carbon monoxide (CO), carbon dioxide ($CO_2$), oxygen ($O_2$), and soot were presented as a function of mixture fraction and compared with state relationships based on the idealized reaction of hydrocarbon fuels. The mixture fraction analysis made it possible to rearrange hundreds of species measurements, which were done under various fire conditions and at two locations of the upper layer, in term of the unified parameter, i.e. the mixture fraction. The results also showed that inclusion of soot in the mixture fraction calculation could improve the performance of analysis, especially for the sooty fuels such as heptane and toluene.

키워드

참고문헌

  1. J.G. Quintiere, W.J. Rinkinen and W.W. Jones, "The Effect of Room Opening on Fire Plume Entrainment", Comb. Sci. Tech., Vol.26, pp.193-201(1981). https://doi.org/10.1080/00102208108946960
  2. C.L. Beyler, "Major Species Production by Diffusion Flames in a Two-Layer Compartment Fire Environment", Fire Safety Journal, Vol.10, pp.47-56 (1986). https://doi.org/10.1016/0379-7112(86)90031-7
  3. W.M. Pitts, "The Global Equivalence Ratio Concept and the Formation Mechanism of Carbon Monoxide in Enclosure Fire", Prog. Ener. Comb. Sci., Vol.21, pp.197-237(1995). https://doi.org/10.1016/0360-1285(95)00004-2
  4. P. Blomqvis and A. Lonnermark, "Characterization of the Combustion Products in Large-Scale Fire Tests; Comparison of Three Experimental Configurations", Fire and Materials, Vol.25, pp.71-81 (2001). https://doi.org/10.1002/fam.761
  5. R.G. Gann, J.D. Averill, E.L. Johnsson, M.R. Nyden, and R.D. Peacock, "Smoke Compartment Yields from Room-Scale Fire Tests", NIST TN 1453, NIST, Maryland(2003).
  6. A. Lock, M. Bundy, E.L. Johnsson, A. Hamins, G.H. Ko, and C.H. Hwang, "Experimental Study of the Effects of Fuel Type, Fuel Distribution, and Vent Size on Full-Scale Underventilated Compartment Fires in an ISO 9705 Room", NIST TN 1603, NIST, MD (2007).
  7. K.B. McGrattan, S. Hostikka, J.E. Floyd, H.R. Baum, and R.G. Rehm, "Fire Dynamics Simulator (Version 5), Technical Reference Guide", NIST SP 1018-5, NIST, MD(2007).
  8. K.B. McGrattan and A. Hamins, "Numerical Simulation of the Howard Street Tunnel Fire", Fire Technology, Vol.42, No.4, pp.273-281(2006). https://doi.org/10.1007/s10694-006-7506-9
  9. 고권현, 김성찬, A. Hamins, 유홍선, "환기부족 구획 화재에 대한 FDS 해석 및 검증", 한국화재소방학회논문지, Vol.23, No.5, pp.103-109(2009).
  10. R.W. Bilger, "Reaction Rates in Diffusion Flames", Combust. Sci., Vol.30, pp.277-284(1977).
  11. N. Peters, "Laminar Diffusion Flamelet Models in Non-Premixed Turbulent Combustion", Prog. Ener. Comb. Sci., Vol.10, pp.319-339(1984). https://doi.org/10.1016/0360-1285(84)90114-X
  12. Y.R. Sivathanu and G.M. Faeth, "Generalized State Relationships for Scalar Propertes in Nonpremixed Hydrocarbon/Air Flames", Comb. Flame, Vol.82, pp.211-230(1990). https://doi.org/10.1016/0010-2180(90)90099-D
  13. A. Hamins and K. Seshadri, "The Structure of Diffusion Flames Burning Pure, Binary, and Ternary Solutions of Methanol, Heptane, and Toluene", Comb. Flame, Vol.68, pp.295-307(1987). https://doi.org/10.1016/0010-2180(87)90006-X
  14. J.E. Floyd, K.B. McGrattan, S. Hostikka, and H.R. Baum, "CFD Fire Simulation Using Mixture Fraction Combustion and Finite Volume Radiative Heat Transfer", J. Fire Protection Eng., Vol.13, pp.11-36 (2003). https://doi.org/10.1177/1042391503013001002
  15. G.H. Ko, A. Hamins, M. Bundy, E.L. Johnsson, S.C. Kim, and D.B. Lenhert, "Mixture Fraction Analysis of Combustion Products in the Upper Layer of Reduced-Scale Compartment Fires", Comb. Flame, Vol.156, pp.467-476(2009). https://doi.org/10.1016/j.combustflame.2008.08.012
  16. X. Zhou and S. Mahlingam, "A Suitable Mixture Fraction for Diffusion Flames of Wood Pyrolysis Gas", Comb. Flame, Vol.133, pp.197-199(2003). https://doi.org/10.1016/S0010-2180(02)00550-3