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Abstract

In this paper, we develop the noninformative priors for the reliability in a stress-
strength model where a strength X and a stress Y have independent exponential distri-
butions with different scale parameters and a common location parameter. We derive
the reference priors and prove the propriety of joint posterior distribution under the
general prior including the reference priors. Through the simulation study, we show
that the proposed reference priors match the target coverage probabilities in a frequen-
tist sense.

Keywords: Exponential distribution, nonregular case, reference prior, stress-strength
model.

1. Introduction

The exponential distribution plays an important role in the field of life testing and reliabil-
ity. The reasons for using the exponential distribution assumption in reliability applications
can be found in the early work of Davis (1952), Epstein and Sobel (1953), and others. Fur-
ther justification, in the form of theoretical arguments to support the use of the exponential
distribution as the failure law of complex equipment, is presented in the book by Barlow
and Proschan (1975) and Lawless (2003).

The exponential distribution with location and scale parameters is a nonregular family
of distribution. This distribution is very useful in describing data with a threshold time.
This distribution is easy to deal with and has received considerable theoretical attention.
The maximum likelihood estimates of this model is easy to obtain (Lawless, 2003). This
distribution is also called two parameter exponential distribution.

The problem of making inference about stress-strength model has received a considerable
attention in literature. When a stress exceeds a strength, an item will be failed to function.
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The probability that an item functions properly is the measure of confidence of the item.
So, to make statistical inference about this probability is very important.

Let X be the random variable which describes the life span of an item, and Y be the ran-
dom variable which affects the lifetime of an item giving some stress. Then, the probability
of functioning can be written by

R = P (Y < X).

About statistical inference for R related with two parameter exponential distribution, Beg
(1980) obtained the minimun variance unbasied estimatior (M.V.U.E.) of R when X and
Y are independent exponential random variables with unequal scale and unequal location
parameters. Bai and Hong (1992) discussed estimation of R in the exponential case with
common location parameter. Baklizi and El-Masri (2004) considered a bayesian estimation of
reliability R, where X and Y have independent exponential distributions with the common
location parameter. Krishnamoorthy, Mukherjee and Guo (2007) proposed the test and
interval estimation procedures based on the generalized variable approach for the reliability
R when X and Y have independent exponential distributions with unequal scale and unequal
location parameters.

The studies, mentioned above except Baklizi and El-Masri (2004), are related with fre-
quentist’s approach. A Bayesian approach with noninformative prior is an attractive method
in statistical inferences. There may be a situation when one forces to use noninformative
prior, because of lack of prior information. Another reason is that a noninformative prior
is an objective prior. So, if one uses a noninformative prior, it doesn’t need to study the
robustness of inference under the hyper parameters. But, because a noninformative prior
is frequently improper density, one must prove the propriety of posterior density when one
adopts a noninformative prior.

Despite of this point, many authors have tried to develop noninformative priors in various
statistical models. The performance of a noninformative prior in statistical inference was
good. There were two efficient ways of developing noninformative priors. One is the reference
prior of Bernardo (1979) which is extended by Berger and Beranrdo (1989, 1992) to a
general algorithm to derive a reference prior by splitting the parameters into several groups
according to their order of inferential importance. The other is a probability matching prior
initiated by Welch and Peers (1963) which matches the posterior quantile of parameter
of interest to frequentist coverage probability asymptotically. Lately, Stein (1985, 1994),
Tibshirani (1989), DiCiccio and Stern (1994), Datta and Ghosh (1995), Datta (1996), Kim
et al. (2009a, 2009b) and Mukerjee and Ghosh (1997) developed probability matching priors
and studied their properties in many statistical models.

A statistical model with threshold parameter or guarantee time parameter is an useful
model when lifetime of an item is always longer than a given threshold time. To analyze
these data, we need inclusion of such a parameter in the model. Occasionally, this model is
natural extension of a regular family of distribution. Specially, in Bayesian analysis, objective
priors like reference priors or probability matching priors were developed when the family
of distribution is regular. But, But related with a nonregular distribution, there were only
a little work developing objective priors. Ghosal and Samanta (1995, 1997) developed the
reference priors for the case of one parameter families of discontinuous densities in the sense
of Bernardo (1979). Ghosal (1997, 1999) proposed the general method to find the reference
priors for the multiparameter nonregular cases when, except a threshold parameter, the
distribution under consideration is regular with respect to the rest of parameters. Based on
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his results, recently, Kang et al. (2008, 2010) developed the reference priors for exponential
and half-normal distributions and showed that the proposed reference prior matches the
target coverage probabilities very well.

In this paper, we want to develop the reference priors for R on the purpose of objective
Bayesian analysis, when X and Y have two independent two parameter exponential distri-
butions with the common location parameter. As examples of this model, when X and Y are
lifetimes of two devices with same guarantee time which are distributed as two parameter
exponential distribution, R is the probability of one device failing before the other. Another
example is that, when X represents the strength of a chamber against a pressure and Y is
a operating pressure which gives stress to the chamber, R is the probability of operating
properly with operating pressure.

Consider X and Y have independent two parameter exponential distributions with scale
parameters λ1 and λ2, respectively and a common location parameter µ. Then the proba-
bility density functions of X and Y are given by

f(x|µ, λ1) = λ−11 exp

{
−x− µ

λ1

}
, x ≥ µ, µ ≥ 0, λ1 > 0, (1.1)

and

f(y|µ, λ2) = λ−12 exp

{
−y − µ

λ2

}
, y ≥ µ, µ ≥ 0, λ2 > 0, (1.2)

respectively. The reliability R = P (Y < X) is given by λ1/(λ1 + λ2). The present paper
focuses on the reference priors for the reliability parameter R.

The outline of the remaining sections is as follows. In Section 2, we develop reference
priors for the reliability parameter. In Section 3, we provide the propriety of the posterior
distribution for the general prior including the reference priors. In Section 4, simulated
frequentist coverage probabilities under the derived priors are given.

2. The reference priors

In this section, we will develop the reference priors for different groups of orderings of
importance by following Ghosal (1997).

Let Xi, i = 1, · · · , n1, denote observations from two parameter exponential distribution
with parameters µ and λ1, and Yi , i = 1, · · · , n2, denote observations from two parameter
exponential distribution with parameters µ and λ2. Then likelihood function is given by

f(x,y|µ, λ1, λ2) = λ−n1
1 λ−n2

2 exp

{
− 1

λ1

n1∑
i=1

(xi − µ)− 1

λ2

n2∑
i=1

(yi − µ)

}
, (2.1)

where µ ≥ 0, λ1 > 0 and λ2 > 0. Let

θ1 =
λ1

λ1 + λ2
and θ2 = λn1

1 λn2
2 .
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Then with this reparameterization, the likelihood function is given by

f(x,y|µ, θ1, θ2) = θ−12 exp

{
−θ
− 1

n1+n2
2

(
1− θ1
θ1

) n2
n1+n2

n1∑
i=1

(xi − µ)

− θ
− 1

n1+n2
2

(
1− θ1
θ1

)− n1
n1+n2

n2∑
i=1

(yi − µ)

}
. (2.2)

From the likelihood function (2.2), for, j, k = 1, 2, let

Jjk(µ, θ1, θ2) =

∫ ∫
gθj (x,y;µ, θ1, θ2)gθk(x,y;µ, θ1, θ2)dxdy,

where gθj = ∂g/∂θj and g = f
1
2 . Let F (µ, θ1, θ2) = {4Jjk(µ, θ1, θ2)}, j, k = 1, 2. Then this

matrix is given by

F (µ, θ1, θ2) = Diag

{
n1n2

(n1 + n2)(1− θ1)2θ21
,

1

(n1 + n2)θ22

}
. (2.3)

And let

c(µ, θ1, θ2) = Eµ,θ1,θ2 [∂ log f/∂µ]

= n1θ
− 1

n1+n2
2

(
1− θ1
θ1

) n2
n1+n2

+ n2θ
− 1

n1+n2
2

(
1− θ1
θ1

)− n1
n1+n2

.

Then the conditional reference prior for µ given θ1, θ2 is

π(µ|θ1, θ2) = c(µ, θ1, θ2)

= n1θ
− 1

n1+n2
2

(
1− θ1
θ1

) n2
n1+n2

+ n2θ
− 1

n1+n2
2

(
1− θ1
θ1

)− n1
n1+n2

. (2.4)

We firstly derived the reference prior based on Berger and Bernardo (1992) algorithm
of the regular case when θ1 is parameter of interest. The reference prior is developed by
considering a sequence of compact subsets of the parameter space and taking the limit of a
sequence of priors as these compact subsets fill out of the parameter space. The compact
subsets were taken to be Cartesian products of sets of the form

θ1 ∈ [a1, b1], θ2 ∈ [a2, b2].

Here the limit of a1, a2 will tend to 0 and b1, b2 will tend to ∞. A subscripted Q denotes a
function that is constant and does not depend on any parameter but any Q may depend on
the ranges of the parameters. For the derivation of the reference prior, let h1 = 4J11(µ, θ1, θ2)
and h2 = 4J22(µ, θ1, θ2), then

h1 =
n1n2

(n1 + n2)(1− θ1)2θ21
and h2 =

1

(n1 + n2)θ22
.

Note that ∫ b2

a2

h
1/2
2 dθ2 =

∫ b2

a2

(n1 + n2)1/2θ−12 dθ2 = (n1 + n2)1/2Q1.
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It follows that

πl2(θ2|θ1) = Q−11 θ−12 .

Now

El{log h1|θ2} =

∫ b2

a2

Q−11 θ−12 log

[
n1n2

(n1 + n2)(1− θ1)2θ21

]
dθ2

= log

[
n1n2

(n1 + n2)(1− θ1)2θ21

]
.

It follows that

πl1(θ1) ∝ exp[El{log h1|θ2}/2] = exp{Q2/2}(1− θ1)−1θ−11 .

Therefore the reference prior is

π(θ1, θ2) = lim
l→∞

πl2(θ2|θ1)πl1(θ1)

πl2(θ20|θ10)πl1(θ10)
∝ (1− θ1)−1θ−11 θ−12 ,

where θ10 and θ20 are an inner points of the interval (0,∞). Therefore the reference prior
for (µ, θ1, θ2), when θ1 is parameter of interest, is given by

π1(µ, θ1, θ2) ∝ π(θ1, θ2)π(µ|θ1, θ2)

∝ (1− θ1)−1θ−11 θ−12

×

[
n1θ
− 1

n1+n2
2

(
1− θ1
θ1

) n2
n1+n2

+ n2θ
− 1

n1+n2
2

(
1− θ1
θ1

)− n1
n1+n2

]
. (2.5)

Note that under original parametrization (µ, λ1, λ2), the reference prior is

π1(µ, λ1, λ2) ∝ λ−11 λ−12 (n1λ
−1
1 + n2λ

−1
2 ). (2.6)

Also as F is independent of µ, the prior for (θ1, θ2) given µ will not depend on µ. Hence the
reference prior for (µ, θ1, θ2) when (θ1, θ2) is a parameter of interest is given by

π2(µ, θ1, θ2) ∝ (1− θ1)−1θ−11 θ−12

×

[
n1θ
− 1

n1+n2
2

(
1− θ1
θ1

) n2
n1+n2

+ n2θ
− 1

n1+n2
2

(
1− θ1
θ1

)− n1
n1+n2

] 1
2

. (2.7)

When (θ1, θ2) is a parameter of interest, the reference prior for (µ, θ1, θ2) based on an
appropriate penalty term of Ghosh and Mukerjee (1992) and also see Ghosal (1997) is given
by

π3(µ, θ1, θ2) = [detF (µ, θ1, θ2)]
1
2 ∝ (1− θ1)−1θ−11 θ−12 . (2.8)

Note that under original parametrization (µ, λ1, λ2), the reference prior is

π3(µ, λ1, λ2) ∝ λ−11 λ−12 . (2.9)

We will consider the reference priors (2.6) and (2.9) in the next section, because we know
that the reference prior based on an appropriate term is more efficient.
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3. Implementation of the Bayesian procedure

We investigate the propriety of posteriors for a general class of priors which include the
reference priors (2.6) and (2.9). We consider the class of priors

πg(µ, λ1, λ2) ∝ λ−a1 λ−b2 (n1λ
−1
1 + n2λ

−1
2 )c, (3.1)

where a > 0, b > 0 and c ≥ 0. The following general theorem can be proved.

Theorem 3.1 The posterior distribution of (µ, λ1, λ2) under the general prior (3.1) is
proper if n1 + a+ c− 2 > 0, n2 + b+ c− 1 > 0 or n1 + a+ c− 1 > 0, n2 + b+ c− 2 > 0.

Proof : Under the general prior (3.1), the joint posterior for µ, λ1, λ2 given x and y is

π(µ, λ1, λ2|x,y) ∝ λ−n1−a
1 λ−n2−b

2 (n1λ
−1
1 + n2λ

−1
2 )c

× exp

{
− 1

λ1

n1∑
i=1

(xi − µ)− 1

λ2

n2∑
i=1

(yi − µ)

}
. (3.2)

Then integrating with respect to µ in (3.2), we have the posterior

π(λ1, λ2|x,y) ∝ λ−n1−a
1 λ−n2−b

2 (n1λ
−1
1 + n2λ

−1
2 )c(n1λ

−1
1 + n2λ

−1
2 )−1

×
[
exp

{
−n1
λ1

(x̄− z)− n2
λ2

(ȳ − z)
}
− exp

{
−n1
λ1
x̄− n2

λ2
ȳ

}]
, (3.3)

where x̄ =
∑n1

i=1 xi/n1, ȳ =
∑n2

i=1 yi/n2, z = min{x1, · · · , xn1 , y1, · · · , yn2}. From the
posterior density (3.3), we obtain the following inequality.

π(λ1, λ2|x,y) ≤ k1λ−n1−a−c
1 λ−n2−b−c

2 (n1λ
−1
1 + n2λ

−1
2 )−1

×
[
exp

{
−n1
λ1

(x̄− z)− n2
λ2

(ȳ − z)
}
− exp

{
−n1
λ1
x̄− n2

λ2
ȳ

}]
≤ k2λ−n1−a−c+1

1 λ−n2−b−c
2

×
[
exp

{
−n1
λ1

(x̄− z)− n2
λ2

(ȳ − z)
}
− exp

{
−n1
λ1
x̄− n2

λ2
ȳ

}]
, (3.4)

where k1 and k2 are constants. Thus the function (3.4) is proper if n1 + a + c − 2 >
0, n2 + b+ c− 1 > 0. This completes the proof. �

Theorem 3.2 Under the reference prior π1 and π2, the marginal posterior density of θ1 is
given by

π(θ1|x,y) ∝ (1− θ1)−n2−1θn2−1
1

{[
n1x̄+ n2ȳ

(
θ1

1− θ1

)
−
(
n1 + n2

θ1
1− θ1

)
z

]−(n1+n2)

−
[
n1x̄+ n2ȳ

(
θ1

1− θ1

)]−(n1+n2)
}
.
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Under the reference prior π3, the marginal posterior density of θ1 is given by

π(θ1|x,y) ∝ (1− θ1)−n2−1θn2−1
1

(
n1 + n2

θ1
1− θ1

)−1{[
n1x̄+ n2ȳ

(
θ1

1− θ1

)
−
(
n1 + n2

θ1
1− θ1

)
z

]−(n1+n2−1)

−
[
n1x̄+ n2ȳ

(
θ1

1− θ1

)]−(n1+n2−1)
}
.

Note that normalizing constant for the marginal density of θ1 requires only one dimensional
integration. Therefore we can easily compute the marginal posterior density of θ1 and the
marginal moment of θ1.

4. Numerical study

Since a reference prior is frequently a probability matching prior in regular distribution,
we want to know whether the proposed reference priors give similar results in nonregular
distribution or not. We investigate the frequentist coverage probability by investigating the
credible interval of the marginal posteriors density of θ1 under the noninformative prior π1
and π3 given in Section 3 for several configurations (µ, λ1, λ2) and (n1, n2). That is to say,
the frequentist coverage of a 100α%th posterior quantile should be close to α. This is done
numerically. Table 4.1 gives numerical values of the frequentist coverage probabilities of
0.05 (0.95) posterior quantiles for the proposed priors. The computation of these numerical
values is based on the following algorithm for any fixed true (µ, λ1, λ2) and any prespecified
value α. Here α is 0.05 (0.95). Let θπ1 (α|x,y) be the posterior α-quantile of θ1 given x and y.
That is to say, F (θπ1 (α|x,y)|x,y) = α, where F (·|x,y) is the marginal posterior distribution
of θ1. Then the frequentist coverage probability of this one sided credible interval of θ1 is

P(µ,λ1,λ2)(α; θ1) = P(µ,λ1,λ2)(0 < θ1 < θπ1 (α|x,y)). (4.1)

The estimated P(µ,λ1,λ2)(α; θ1) when α = 0.05(0.95) is shown in Table 4.1. In particular, for
fixed (µ, λ1, λ2), we take 10,000 independent random samples of X and Y from the model
(2.2).

For the cases presented in Table 4.1, we see that the reference prior π3 matches the
target coverage probability much more accurately than the reference prior π1 for values of
(µ, θ1, λ1) and values of (n1, n2). In particular, the reference prior π3 meets very well the
target coverage probabilities in small samples. Note that the results of tables are not much
sensitive to change of the values of (µ, θ1, λ1). Thus we recommend to use the reference prior
π3 in the sense of asymptotic frequentist coverage property.

5. Concluding remarks

We have found reference priors for the reliability in a stress-strength model where stress
and strength distributed as two parameter exponential distribution. We derived the reference
priors when θ1 is parameter of interest, and (θ1, θ2) are parameters of interest. We showed
that the reference prior π3 perform better than the reference prior π1 in matching the target
coverage probabilities. Thus we recommend the use of the reference prior π3 for Bayesian
inference of this model.
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Table 4.1 Frequentist coverage probabilities of 0.05 (0.95) posterior quantiles for θ1

µ = 1 µ = 10
θ1 λ1 (n1, n2) π1 π3 π1 π3

0.1 0.1 5,5 0.035 (0.897) 0.048 (0.949) 0.037 (0.890) 0.049 (0.946)
5,10 0.032 (0.887) 0.047 (0.947) 0.033 (0.893) 0.046 (0.946)
10,10 0.043 (0.921) 0.053 (0.950) 0.037 (0.921) 0.048 (0.950)
10,20 0.038 (0.916) 0.051 (0.948) 0.033 (0.918) 0.045 (0.946)
20,20 0.040 (0.933) 0.049 (0.951) 0.037 (0.932) 0.048 (0.950)

1.0 5,5 0.034 (0.890) 0.044 (0.945) 0.039 (0.892) 0.053 (0.946)
5,10 0.037 (0.890) 0.051 (0.950) 0.037 (0.893) 0.049 (0.950)
10,10 0.039 (0.922) 0.051 (0.955) 0.039 (0.920) 0.050 (0.950)
10,20 0.038 (0.921) 0.050 (0.952) 0.037 (0.917) 0.049 (0.949)
20,20 0.043 (0.936) 0.053 (0.953) 0.041 (0.932) 0.050 (0.949)

10.0 5,5 0.034 (0.866) 0.045 (0.930) 0.038 (0.894) 0.049 (0.950)
5,10 0.027 (0.869) 0.038 (0.931) 0.033 (0.892) 0.049 (0.948)
10,10 0.036 (0.908) 0.048 (0.939) 0.041 (0.920) 0.054 (0.952)
10,20 0.033 (0.908) 0.045 (0.942) 0.034 (0.916) 0.049 (0.947)
20,20 0.036 (0.926) 0.047 (0.947) 0.036 (0.932) 0.046 (0.952)

0.3 0.1 5,5 0.055 (0.907) 0.051 (0.946) 0.056 (0.906) 0.051 (0.947)
5,10 0.051 (0.920) 0.050 (0.949) 0.050 (0.912) 0.050 (0.945)
10,10 0.051 (0.927) 0.052 (0.946) 0.051 (0.931) 0.052 (0.951)
10,20 0.051 (0.928) 0.053 (0.945) 0.049 (0.931) 0.051 (0.948)
20,20 0.047 (0.935) 0.050 (0.947) 0.046 (0.939) 0.049 (0.949)

1.0 5,5 0.051 (0.908) 0.048 (0.947) 0.056 (0.910) 0.052 (0.948)
5,10 0.052 (0.921) 0.052 (0.948) 0.048 (0.913) 0.048 (0.946)
10,10 0.047 (0.929) 0.048 (0.946) 0.048 (0.928) 0.050 (0.950)
10,20 0.046 (0.933) 0.049 (0.948) 0.044 (0.930) 0.046 (0.946)
20,20 0.047 (0.939) 0.050 (0.951) 0.051 (0.940) 0.054 (0.951)

10.0 5,5 0.055 (0.903) 0.052 (0.940) 0.051 (0.910) 0.047 (0.949)
5,10 0.045 (0.905) 0.045 (0.938) 0.049 (0.918) 0.049 (0.950)
10,10 0.052 (0.919) 0.053 (0.940) 0.046 (0.928) 0.047 (0.949)
10,20 0.045 (0.932) 0.048 (0.948) 0.049 (0.933) 0.051 (0.950)
20,20 0.049 (0.937) 0.051 (0.951) 0.047 (0.939) 0.050 (0.951)

0.5 0.1 5,5 0.073 (0.927) 0.053 (0.947) 0.071 (0.928) 0.049 (0.949)
5,10 0.062 (0.934) 0.051 (0.949) 0.060 (0.931) 0.050 (0.946)
10,10 0.060 (0.940) 0.052 (0.949) 0.057 (0.937) 0.048 (0.945)
10,20 0.054 (0.942) 0.049 (0.949) 0.056 (0.943) 0.051 (0.951)
20,20 0.056 (0.948) 0.052 (0.951) 0.058 (0.948) 0.053 (0.952)

1.0 5,5 0.071 (0.930) 0.050 (0.948) 0.071 (0.925) 0.048 (0.945)
5,10 0.062 (0.935) 0.052 (0.946) 0.063 (0.937) 0.052 (0.950)
10,10 0.058 (0.938) 0.050 (0.947) 0.059 (0.944) 0.051 (0.952)
10,20 0.055 (0.945) 0.050 (0.951) 0.054 (0.942) 0.049 (0.949)
20,20 0.057 (0.946) 0.052 (0.950) 0.051 (0.945) 0.048 (0.951)

10.0 5,5 0.075 (0.921) 0.056 (0.940) 0.070 (0.929) 0.051 (0.950)
5,10 0.059 (0.937) 0.050 (0.949) 0.064 (0.932) 0.054 (0.947)
10,10 0.064 (0.943) 0.057 (0.951) 0.058 (0.939) 0.049 (0.949)
10,20 0.055 (0.942) 0.049 (0.948) 0.054 (0.944) 0.049 (0.950)
20,20 0.058 (0.943) 0.054 (0.947) 0.054 (0.945) 0.049 (0.951)

0.7 0.1 5,5 0.094 (0.946) 0.054 (0.950) 0.085 (0.947) 0.050 (0.952)
5,10 0.075 (0.946) 0.055 (0.948) 0.065 (0.944) 0.044 (0.947)
10,10 0.068 (0.954) 0.050 (0.953) 0.068 (0.951) 0.052 (0.950)
10,20 0.061 (0.948) 0.050 (0.946) 0.060 (0.952) 0.048 (0.951)
20,20 0.061 (0.957) 0.050 (0.955) 0.061 (0.953) 0.050 (0.951)

1.0 5,5 0.087 (0.948) 0.052 (0.953) 0.086 (0.944) 0.050 (0.948)
5,10 0.070 (0.946) 0.050 (0.948) 0.071 (0.947) 0.050 (0.949)
10,10 0.071 (0.952) 0.051 (0.951) 0.073 (0.952) 0.054 (0.951)
10,20 0.065 (0.953) 0.055 (0.953) 0.060 (0.952) 0.049 (0.951)
20,20 0.063 (0.953) 0.051 (0.951) 0.065 (0.955) 0.054 (0.952)

10.0 5,5 0.102 (0.944) 0.062 (0.948) 0.087 (0.948) 0.050 (0.952)
5,10 0.070 (0.952) 0.051 (0.954) 0.071 (0.953) 0.049 (0.955)
10,10 0.067 (0.953) 0.049 (0.952) 0.068 (0.950) 0.047 (0.948)
10,20 0.065 (0.952) 0.053 (0.951) 0.064 (0.951) 0.053 (0.949)
20,20 0.067 (0.954) 0.052 (0.952) 0.065 (0.952) 0.053 (0.951)
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Table 4.1 Continued.

µ = 1 µ = 10
θ1 λ1 (n1, n2) π1 π3 π1 π3

0.9 0.1 5,5 0.109 (0.958) 0.054 (0.946) 0.108 (0.963) 0.050 (0.950)
5,10 0.073 (0.960) 0.048 (0.951) 0.073 (0.957) 0.049 (0.949)
10,10 0.083 (0.963) 0.050 (0.952) 0.078 (0.962) 0.050 (0.950)
10,20 0.065 (0.955) 0.047 (0.948) 0.065 (0.956) 0.049 (0.950)
20,20 0.069 (0.958) 0.050 (0.950) 0.068 (0.959) 0.050 (0.950)

1.0 5,5 0.111 (0.963) 0.052 (0.951) 0.107 (0.966) 0.052 (0.954)
5,10 0.079 (0.958) 0.054 (0.950) 0.079 (0.958) 0.051 (0.949)
10,10 0.078 (0.963) 0.051 (0.950) 0.078 (0.961) 0.047 (0.948)
10,20 0.064 (0.958) 0.049 (0.951) 0.068 (0.958) 0.051 (0.950)
20,20 0.073 (0.961) 0.052 (0.951) 0.072 (0.959) 0.051 (0.950)

10.0 5,5 0.111 (0.961) 0.054 (0.948) 0.114 (0.962) 0.053 (0.949)
5,10 0.080 (0.960) 0.051 (0.953) 0.076 (0.959) 0.051 (0.950)
10,10 0.082 (0.966) 0.050 (0.955) 0.078 (0.962) 0.047 (0.950)
10,20 0.065 (0.959) 0.051 (0.951) 0.065 (0.952) 0.048 (0.945)
20,20 0.065 (0.960) 0.047 (0.951) 0.070 (0.960) 0.051 (0.950)
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