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A MULTIGRID METHOD FOR AN OPTIMAL CONTROL
PROBLEM OF A DIFFUSION-CONVECTION EQUATION

Hunki Baek, Sang Dong Kim, and Hyung-Chun Lee

Abstract. In this article, an optimal control problem associated with
convection-diffusion equation is considered. Using Lagrange multiplier,
the optimality system is obtained. The derived optimal system becomes
coupled, non-symmetric partial differential equations. For discretizations
and implementations, the finite element multigrid V -cycle is employed.
The convergence analysis of finite element multigrid methods for the
derived optimal system is shown. Some numerical simulations are per-
formed.

1. Introduction

Optimization and control problems for systems associated with partial dif-
ferential equations arise in many applications [3, 16, 20, 21] and are receiving
much attention because of their importance in the industrial design process.
Especially, the need for accurate and efficient solution methods for these prob-
lems has become an important issue.

Optimization or control problems have the usual three ingredients. First,
one has an objective, a reason why one wants to control the state variables.
Mathematically, such an objective is expressed as a cost, or performance func-
tional. Next, one has controls or design parameters at one’s disposal in order to
meet the objective. Indeed, controls or design parameters are expressed in term
of unknown data in the mathematical specification of the problem. Finally, one
has constraints that determine what type of partial differential equations are
interested in and that place direct or indirect limits on candidate optimizers. In
this paper, we concern the diffusion-convection equation as the type of partial
differential equations. The optimization problem is then to find optimal state
and controls that minimize the objective functional subject to the requirement
that the constraints are satisfied.
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It is well known that such constrained optimization problems can be con-
verted to the unconstrained optimization problems by the Lagrange multiplier
method [3, 16], which leads to the state equation, and adjoint equations, and
an optimality condition. Because we think the diffusion-convection equation
which is uniformly positive definite, one may see that the optimality system
is a coupled non-symmetric and definite system. For a numerical approach we
consider the finite element multigrid method to solve the discretized optimal-
ity systems. This is because multigrid methods have been extensively used to
solve discretized partial differential equations successfully for a long time in
many literature (for example, [4, 7, 8, 10, 11, 12, 19]). It is known that multi-
grid methods [7, 19] solve elliptic problems with optimal computational order.
This fact has been demonstrated in the case of multigrid applied to a singu-
lar optimal control problem associated with a nonlinear elliptic equation [6].
Such techniques were applied to solve optimal control problems [5, 6, 17, 18].
Especially, in [5], Borzi and et al. proved the multigrid convergence of a fi-
nite difference method for the optimal control optimality system, which is two
copies of Poisson equations (a decoupled symmetric system). However, it is
difficult to adopt the methods used in [5] to the optimality system (4) because
of the convection term. To avoid such difficulties, we use the perturbation op-
erator. Thus, the main purpose of this paper is to show the convergence of a
finite element multigrid method for the optimality system (4), which is a cou-
pled nonsymmetric system. In particular, applying V multigrid algorithms to
the whole coupled optimality system, we provide the multigrid V -cycle conver-
gence analysis with same optimal convergence phenomena as the usual elliptic
boundary value problems posses.

We give some examples in Section 4. We exhibit that, in the sense of ap-
proximating the state variables, the numerical approximation by V -cycle for
a chosen acceleration parameter to weak solutions of the optimality system
approaches the state variable. These phenomena can be verified by showing
numerical errors in terms of L2 errors. It is also shown that the numerical
results verify optimal acceleration parameters for minimizing the quadratic
functional.

In the following section we describe optimal control problem with some nec-
essary introduction for multigrid methods. For a coupled optimality system,
the convergence of finite element multigrid methods will be shown in Section 3.
With both a model problem and a convection-diffusion problem, several nu-
merical examples are provided for optimality systems in terms of L2 errors in
Section 4. Finally, we provide some conclusions in Section 5.

2. The optimal control problem

We consider an optimal control problem minimizing a quadratic functional

(1) J (u, θ) =
α

2

∫

Ω

|u− û|2dΩ +
δ

2

∫

Ω

|θ|2dΩ
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subject to θ ∈ L2(Ω) and the following uniformly positive definite elliptic prob-
lem

(2)

{
−∇ · (B∇u) + b · ∇u + u = θ in Ω,

u = 0 on ∂Ω,

where Ω is a convex polygonal domain or has C1,1 boundary condition in R2 and
û ∈ L2(Ω) is the objective function, and α, δ > 0 are the weights of the cost of
the control. Further we may assume that B = (Bij(x)) is symmetric, uniformly
positive definite matrix with C1-functions Bij(x) and each component bi(x) of
b(x) is continuous differentiable on Ω̄.

The optimal control problem we consider is to seek a state u and a controller
θ so that the functional (1) is minimized subject to (2). Such constrained
optimization problems may be recast as unconstrained optimization problems
through the Lagrange multiplier method. The existence of the optimal solution
and Lagrange multiplier is well known [16, 20, 21]. Then introducing Lagrange
multiplier v ∈ H2(Ω) ∩ H1

0 (Ω) and using Green’s formula lead the following
coupled elliptic boundary value problem:

(3)

−∇ · (B∇u) + b · ∇u + u = θ in Ω,

−∇ · (B∇v)−∇ · (vb) + v = α(û− u) in Ω,

δθ = v in Ω,

θ = 0, u = 0, v = 0 on ∂Ω.

Since the corresponding formal normal equations to (3) leads to an indefinite
system of equations, we may replace θ by 1

δ v in first equation of (3) so that
we may have a positive definite system. This procedure, letting αû = f for
convenience, yields to the optimality system such as

(4)
−∇ · (B∇u) + b · ∇u + u− 1

δ
v = 0 in Ω,

−∇ · (B∇v)−∇ · (vb) + v + αu = f in Ω,

u = 0, v = 0 on ∂Ω.

Define a bilinear form A(·, ·; ·, ·) on the space H1
0 (Ω)×H1

0 (Ω) by

(5) A(u, v; w, z) = αL(u,w) +
1
δ
L(z, v)− α

δ
(v, w) +

α

δ
(u, z),

where

(6) L(u,w) = (B∇u,∇w) + (b · ∇u,w) + (u,w).

Now, we can see that the unconstrained optimization problems becomes the
variational problem for finding (u, v) ∈ H1

0 (Ω)×H1
0 (Ω) such that

(7) A(u, v;w, z) =
1
δ
(f, z) for all (w, z) ∈ H1

0 (Ω)×H1
0 (Ω),

where H1
0 (Ω) is the standard Sobolev space with norm ‖ · ‖1. In this paper we

use also the standard Sobolev space Hs(Ω) with norm ‖ · ‖s for nonnegative
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integer. Note that the usual L2(Ω) space is same as H0(Ω) with the usual ‖ ·‖0
norm. It is easy to see that the bilinear form (5) is continuous. From (2), we
know that B is uniformly positive definite. Thus, from G̊arding Inequality [13],
the bilinear form (5) satisfies the coercivity.

Let us split the bilinear form A(·, ·; ·, ·) into the symmetric bilinear form
Â(·, ·; ·, ·) and nonsymmetric bilinear form D(·, ·; ·, ·) such that

(8) A(u, v; w, z) = Â(u, v;w, z) +D(u, v; w, z),

where

(9) Â(u, v;w, z) = α(B∇u,∇w) + α(u,w) +
1
δ
(B∇v,∇z) +

1
δ
(v, z)

and

(10) D(u, v; w, z) = α(b · ∇u,w) +
1
δ
(b · ∇z, v)− α

δ
(v, w) +

α

δ
(u, z).

Then we easily show that the form D(·, ·; ·, ·) satisfies the inequalities, for some
Cd > 0,

(11) |D(u, v;w, z)| ≤ Cd(||u||1 + ||v||1)(||w||0 + ||z||0)
and

(12) |D(u, v; w, z)| ≤ Cd(||u||0 + ||v||0)(||w||1 + ||z||1).
For a finite element multigrid approximation, let Th be a quasi uniform tri-

angulation of Ω which has a sequence of nested triangulations of Ω in the usual
way. Let us denote Tk+1 := Th2−k . We assume that a coarse triangulations T1

of Ω is given. Let Tk(k ≥ 2) be obtained from Tk−1 via a regular subdivision.
We let the number of levels in the multigrid algorithm be determined by J . For
J ≥ 1 define Vk for k = 1, 2, . . . , J to be the functions which are piecewise linear
with respect to Tk that vanish on ∂Ω, so that V1 ⊂ V2 ⊂ · · · ⊂ VJ ⊂ H1

0 (Ω)2.
Let hk be the mesh size of Tk, i.e., hk = maxT∈Tk

diamT with hk = 1
2hk−1.

The mesh-dependent inner product (·, ·)k on Vk ×Vk defined by

(13) (w, z)k = h2
k

nk∑

i=1

(w1(xi)z1(xi) + w2(xi)z2(xi)),

where w = (w1, w2), z = (z1, z2) ∈ Vk and {xi}nk
i=1 is the set of internal vertices

of Tk.
Let us denote (uhk

, vhk
) ∈ Vk as the finite element solution corresponding

to (7). Then one may prove immediately that

(14) ||u− uhk
||1 + ||v − vhk

||1 ≤ Chk(||u||2 + ||v||2)
and

(15) ||u− uhk
||0 + ||v − vhk

||0 ≤ Ch2
k(||u||2 + ||v||2),

where C is an absolute constant.
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3. Multigrid convergence analysis for the optimal system

The aim of this section is to provide the convergence theory by multigrid meth-
ods for finding the solution (uJ , vJ) ∈ VJ such that

(16) A(uJ , vJ ; wJ , zJ) =
1
δ
(f, zJ) for all (wJ , zJ) ∈ VJ .

From now, we drop the subindex J without mention.
Let Ak and Âk(k = 1, . . . , J) be the matrix representations of the form

A(·, ·; ·, ·) and Â(·, ·; ·) on Vk ×Vk with respect to the mesh-dependent inner
product (·, ·)k respectively. Let Dk = Ak − Âk be the matrix with respect to
D(·, ·; ·, ·). Then for all w, z ∈ Vk

(17) (Akw, z)k = A(w; z), (Âkw, z)k = Â(w, z)k, Dk = D(w; z).

We next introduce some discrete operators which play a fundamental role
both in the analysis and the algorithms to be considered in this paper: Let
Pk : H1

0 (Ω) ×H1
0 (Ω) → Vk and P̂k : H1

0 (Ω) ×H1
0 (Ω) → Vk be the orthogo-

nal projection operators with respect to A(·, ·; ·, ·) and Â(·, ·; ·, ·), respectively.
Indeed, for all w ∈ H1

0 (Ω)×H1
0 (Ω) and z ∈ Vk,

A(Pkw; z) = A(w; z) and Â(P̂kw; z) = Â(w; z).

The restriction operator P0
k−1 : Vk → Vk−1 is defined by

(18) (P0
k−1w, z)k−1 = (w, z)k for all w, z ∈ Vk−1.

Lemma 3.1. It follows that

(19) Ak−1Pk−1 = P0
k−1Ak

and

(20) Âk−1P̂k−1 = P0
k−1Âk.

Proof. For the proof of (19), it is enough to see for all w ∈ Vk and z ∈ Vk−1

that

(Ak−1Pk−1w, z)k−1 = A(Pk−1w; z) = A(w; z)

= (Akw, z)k = (P0
k−1Akw, z)k−1.

In a similar way, we have (20). ¤

Now define a scale of mesh-dependent norms || · ||ŝ,k as

(21) ||w||ŝ,k =
√

(Âs
kw,w)k for all w ∈ Vk.

We remark that ||·||0 and ||·||0̂,k are equivalent (see [13]) and that ||·||1 is equivalent
to || · || bA, which allows us to assume ||w||1 = ||w|| bA for all w ∈ H1

0 (Ω)×H1
0 (Ω).

Now let us recall the known multigrid algorithm here. For this, let R̂k = Rk

be a symmetric relaxation operator.
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Multigrid Algorithm:
Let z ∈ VJ . Then P̂kz ∈ Vk. Consider ÂkP̂kz = g for g ∈ Vk.

(1) Define B̂1 = Â−1
1 .

(2) Set z0 = 0.

(3) For 1 ≤ l ≤ m1, let zl = zl−1 + R̂k(g − ÂkP̂kzl−1).
(4) Define zm1+1 = zm1 + q, where q is defined by q = B̂k−1P0

k−1(g −
ÂkP̂kzm1).

(5) For m1 + 2 ≤ l ≤ m1 + m2 + 1, let zl = zl−1 + R̂k(g − ÂkP̂kzl−1).
(6) Define B̂kg = zm1+m2+1.

We may assume presmoothing process only, that is m1 = 1 and m2 = 0. First
we consider the symmetric positive definite part of the given coupled optimality
system (4). Then we will discuss the whole coupled optimality system (4).

For k > 1, let K̂k := I−R̂kÂk (defined on Vk) and T̂k := R̂kÂkP̂k (defined
on VJ). Set T̂1 = P̂1. Note that P̂k−1P̂k = P̂k−1. For z ∈ VJ , it follows that

(22) z− z1 = z− R̂kg = z− R̂kÂkP̂kz = (I− R̂kÂkP̂k)z = (I− T̂k)z.

Using (22) it follows that for z ∈ VJ

(23)

(I− B̂kÂkP̂k)(z− z0) = z− B̂kg = z− (z1 + q)

= z− z1 − B̂k−1P0
k−1(g − ÂkP̂kz1)

= z− z1 − B̂k−1P0
k−1ÂkP̂k(z− z1)

= z− z1 − B̂k−1Âk−1P̂k−1P̂k(z− z1)

= (I− B̂k−1Âk−1P̂k−1)(I− T̂k)z.

The convergence results of the multigrid method will be expressed in terms of
the error operators Êk = I−B̂kÂkP̂k and Ê := ÊJ . Since Êk = Êk−1(I−T̂k),
we have

(24) Êk = (I− T̂1)(I− T̂2) · · · (I− T̂k).

To prove convergence of multigrid for the optimal control optimality system
(4), we need to provide the convergence of multigrid algorithms for the decou-
pled symmetric system which is the symmetric part of (4). In this case, the
decoupled symmetric system consists of two simple elliptic Dirichlet boundary
value problem such as

−∇ · (B∇u) + u = g1 in Ω
−∇ · (B∇v) + v = g2 in Ω

u = v = 0 on ∂Ω.

Hence, it is enough to adopt the results of [9] and [11], in which the following
assumptions (A.1) - (A.3) are used (see [8, 10, 11]). We assume that there is a
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constant CbR such that

(A.1)
(w,w)k

λk
≤ CbR(R̂kw,w)k for all w ∈ Vk,

where R̂k = (I− K̂∗
kK̂k)Â−1

k and λk is the largest eigenvalue of Âk. Here and
in the remainder of this paper, ∗ denotes the adjoint with respect to the inner
product Â(·, ·). There is a constant θ < 2 not depending on k satisfying

(A.2) Â(T̂kw, T̂kw) ≤ θÂ(T̂kw,w) for all w ∈ Vk.

Then ‖I − T̂k‖ < 1 can be shown under (A.2) in the following way. For any
w ∈ VJ ,

(25)
Â((I− T̂k)w, (I− T̂k)w) = Â(w,w)− 2Â(T̂kw,w) + Â(T̂kw, T̂kw)

≤ Â(w,w)− (2− θ)Â(T̂kw,w) ≤ Â(w,w).

The final assumption is that for k > 1, there exists a constant CbT satisfying

(A.3) (T̂kw, T̂kw)k ≤ CbTλ−1
k Â(T̂kw,w) for all w ∈ Vk,

or equivalently

(26) (R̂kw,w)k ≤ CRλ−1
k Â(w,w) for all w ∈ Vk.

Then, following the same arguments in [9] and [11], we have the convergence
statement.

Theorem 3.2. Let R̂k be any symmetric smoother satisfying (A.1) and (A.2)
for k > 1. Then there exists a positive constants γ̂ < 1 not depending on J
such that

||Êw|| bA ≤ γ̂ ||w|| bA for all w ∈ VJ.

Now, let us turn to the multigrid algorithm corresponding to coupled opti-
mality system (4) which is definitely nonsymmetric. Note that it has the same
recursive form as (23) with Bk,Ek, etc., instead of B̂k, Êk, etc., and thus

(27) Ek = (I−T1)(I−T2) · · · (I−Tk).

To analyze the multigrid algorithm, we use the perturbation operator Zk such
that

Tk = T̂k + Zk.

Lemma 3.3. For any w, z ∈ VJ and k > 1,

(28) Â(Zkw; z) = D(w; T̂kz),

and for k = 1,

(29) Â(Z1w; z) = D((I−P1)w; P̂1z).
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Proof. Since for any w, z ∈ VJ and k > 1

Â(Tkw; z) = (Tkw, ÂkP̂kz)k = (AkPkw,RkÂkP̂kz)k

= (AkPkw, T̂kz)k = A(w; T̂kz)

= Â(w; T̂kz) +D(w; T̂kz) for all w, z ∈ VJ ,

(28) comes from the definition of Zk. Since

Â(P1w; z) = Â(P1w; P̂1z)

= A(w; P̂1z)−D(P1w; P̂1z)

= Â(w; P̂1z) +D(w; P̂1z)−D(P1w; P̂1z)

= Â(P̂1w; z) +D((I−P1)w; P̂1z),

(29) comes immediately by noting P1 = T1 and P̂1 = T̂1. ¤

Lemma 3.4. Assume that (A.1)-(A.3) hold. For k > 0, we get

||Zk|| bA ≤ CZhk,

where CZ is a constant not dependent on k.

Proof. Let w ∈ VJ . Using the A- and Â-orthogonal property of Pk and P̂k

respectively, we have
(30)
||(I−Pk)w||0 ≤ Chk||(I−Pk)w||1 ≤ Chk||w||1 and ||P̂k||1 ≤ C for all k > 0.

Applying (12) and (30) to (29) give
(31)
|Â(Z1w; z)| = |D((I−P1)w; P̂1z)| ≤ C||(I−P1)w||0||P̂kz||1 ≤ Ch1||w||1||z||1.

Now, consider k > 1. Applying (11) and (A.3) to (28) give

|Â(Zkw; z)| = |D(w; T̂kz)| ≤ Cd||w||1||T̂kz||0 ≤ C||w||1(T̂kz; T̂kz)
1
2
k

≤ Chk||w||1Â(T̂kz; z)
1
2
k ≤ Chk||w||1||z||1.

Therefore, we have the conclusion. ¤

Theorem 3.5. Assume that (A.1)-(A.3) hold. There exists a h0 such that for
all h1 < h0,

||Ew|| bA ≤ γ∗||w|| bA for all w ∈ VJ ,

where γ∗ = γ̂ + Ch1 < 1 and γ̂ is in the Theorem 3.2.

Proof. It is from (25) and Lemma 3.4 that the Â-norm of (I−Tk) = (I− T̂k−
Zk) is less than or equal to 1 + CZhk. Hence, it follows that

||Ek|| bA ≤
k∏

i=1

(1 + CZhi) < C1 for some C1 not dependent on k.
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Consider the difference of the error operators:

(32)

Ek − Êk = Ek−1(I−Tk)− Êk−1(I− T̂k)(by (24) and (27))

= Ek−1(I− T̂k)− Êk−1(I− T̂k)−Ek−1Tk + Ek−1T̂k

= (Ek−1 − Êk−1)(I− T̂k)−Ek−1Zk.

By (25) and Lemma 3.4, for k > 1,

(33) ||Ek − Êk|| bA ≤ ||Ek−1 − Êk−1|| bA + C1CZhk.

Repetitively applying (33) and using

||E1 − Ê1|| bA = ||Z1|| bA ≤ CZh1

gives that, for some C not dependent on k,

||E− Ê|| bA ≤ CZh1 + C1CZ

J∑

k=2

hk ≤ C

∞∑

k=1

hk = C

∞∑

k=1

21−kh1 ≤ Ch1.

The results follow from the triangle inequality and Theorem 3.2. ¤

4. Numerical experiments

Table 1. The values are derived from (35) and (36) when α = 1.

δ ‖u− û‖0 ‖θ‖0 J (u, θ)
1 4.9884e−001 2.4053e−002 1.2471e−001

10−1 4.8863e−001 2.3561e−001 1.2215e−001
10−2 4.0568e−001 1.9561e+000 1.0147e−001
10−3 1.5037e−001 7.2508e+000 3.7594e−002
10−4 2.0618e−002 9.9419e+000 5.1547e−003
10−5 2.1413e−003 1.0325e+001 5.3534e−004
10−6 2.1496e−004 1.0365e+001 5.3741e−005
10−7 2.1504e−005 1.0369e+001 5.3762e−006
10−8 2.1505e−006 1.0369e+001 5.3764e−007
10−9 2.1505e−007 1.0369e+001 5.3764e−008

In this section, we present the usage of multigrid methods applied to a
discretized optimal control problem for two dimensional diffusion-convection
problem. We focus on the role of weight parameters α and δ in the quadratic
functional J (uh, θh) in the sense of how it affects the convergence rate. We
report both the L2 error of the target velocity û and the approximate velocity
uh from multigrid methods and the value of the quadratic functional J (uh, θh)
where θh is understood as the approximate value corresponding to (2). The
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computational domain is triangularized uniformly with the grid interval h rang-
ing from 2−2 to 2−5 for each direction. We use the single approximation space
of continuous piecewise linear polynomials for the approximations of all un-
knowns. We use the preconditioned Richardson method for smoothing iter-
ation and fix m1 = m2 = 1 in the multigrid algorithm. We easily see that
this relaxation scheme satisfies the assumptions of Theorem 3.5. (See [8]). We
set the tolerance of the errors to be 10−6 and the maximum number of iter-
ations to be 500. In order to see that the multigrid methods works well for

Table 2. The numerical results with α = 1 when h = 1/32.

δ ‖uh − û‖0 ‖θh‖0 J (uh, θh)
1 4.9885e−001 2.3984e−002 1.2471e−001

10−1 4.8870e−001 2.3508e−001 1.2217e−001
10−2 4.0597e−001 1.9545e+000 1.0151e−001
10−3 1.5074e−001 7.2607e+000 3.7721e−002
10−4 2.0795e−002 9.9598e+000 5.1761e−003
10−5 2.2087e−003 1.0347e+001 5.3782e−004
10−6 4.8266e−004 1.0389e+001 5.4082e−005
10−7 4.2144e−004 1.0394e+001 5.4914e−006
10−8 4.1711e−004 1.0400e+001 6.2780e−007
10−9 4.1660e−004 1.0412e+001 1.4099e−007

whole system (4), we take the unit square Ω = (0, 1) × (0, 1) as domains and
û(x, y) = sin πx sin πy as a desired state (target velocity).

Example 1. For the first numerical experiments for our optimal control prob-
lem, we choose B and b as the identity matrix and zero vector in (4) respec-
tively. Then, the optimality system becomes

(34)





−∆u + u− v

δ
= 0 in Ω,

−∆v + v + αu = α sinπx sin πy in Ω,

u = 0 on ∂Ω,

v = 0 on ∂Ω.

The exact optimality solutions can easily obtained as

u =
1

1 + δ
α (1 + 2π2)2

sin πx sin πy, v =
δ(1 + 2π2)

1 + δ
α (1 + 2π2)2

sin πx sin πy.

Now, we consider the quadratic functional in (1). Note that all terms of (1)
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Figure 1. The norms ‖uh − û‖0 for δ = 10−5 and δ = 10−6

when h = 1/32.
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Figure 2. The norms ‖uh − û‖0 and ‖vh‖0 with δ = 10−5

when h = 1/32.

can be easily calculated exactly. Indeed, we have

(35)
α

2

∫

Ω

|u− û|2dΩ =
α

8

(
1− 1

1 + δ
α (1 + 2π2)2

)2

and

(36)
δ

2

∫

Ω

|θ|2dΩ =
δ(1 + 2π2)2

8(1 + δ
α (1 + 2π2)2)2

.

From (35) and (36) (or seeing the construction of target velocity and exact
solution), we know immediately that if we choose α = 1 and δ = 0, then the
target velocity û and the exact solution u matches completely, but we can not
make δ = 0 because of the relationship θ = v

δ . Hence we will make δ approaches
0. From now on, we consider the weights of the costs satisfying the relationship,
without loss of generality,

0 < δ ≤ α = 1.

First, we display the values of each term in (1) with the quadratic functional
in Table 1 with δ ranging from 1 to 10−8 for fixed α = 1.
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Figure 3. The graph of L2 and H1 errors when α = 1.

Table 3. The convergence rates for L2(Ω) and H1(Ω)-norms
errors when α = 1.

δ h L2 H1 δ h L2 H1

1 1
8 1.905 0.964 10−5 1

8 2.196 1.049
1
16 1.975 0.991 1

16 2.063 1.017
1
32 1.993 0.997 1

32 2.016 1.004
10−1 1

8 1.876 0.977 10−6 1
8 2.226 1.055

1
16 1.967 0.995 1

16 2.093 1.022
1
32 1.991 0.999 1

32 2.026 1.006
10−2 1

8 1.878 0.984 10−7 1
8 2.229 0.105

1
16 1.969 0.997 1

16 2.110 0.102
1
32 1.992 0.999 1

32 2.041 0.100
10−3 1

8 2.002 0.971 10−8 1
8 2.229 0.105

1
16 2.002 0.993 1

16 2.112 0.102
1
32 2.000 0.998 1

32 2.052 0.100
10−4 1

8 2.129 1.021 10−9 1
8 2.229 1.054

1
16 2.040 1.008 1

16 2.112 1.022
1
32 2.010 1.002 1

32 2.054 1.008

In Table 2, we present numerical results for the functional values using the
V cycle multigrid method when h = 1/32 in the sense of L2. According to
Tables 1 and 2, we figure out that the approximate solution uh(δ) converges
slowly to the target velocity û after δ ≤ 10−6 though the approximate control
norm ||θh||0 converges to the norm ||θ||0 as δ → 0. Thus the values of the error
‖uh − û‖0 are not agreeable to those of Table 1 after 10−6. Let us explain
why this phenomenon can be occurred. If v is replaced with −δ∆u + δu in the
second equation of (34), we get the 4th order elliptic boundary value problem
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Figure 4. The pointwise error graph of uh − û with h when
α = 1, δ = 10−5 .

with zero boundary condition

(37) −∆∆u + 2∆u−
(
1 +

α

δ

)
u = −f.

Using the standard finite element analysis for (37), we can induce that for
u ∈ H2(Ω) and α = 1

(38) ‖u− uh‖0 ≤ C

(
1 +

1
δ

)
‖u‖2,

where C is independent of h. Now we can explain why the computed solution
uh can not approach to û as δ approaches 0, by considering ‖uh− û‖0 which is
bounded by ‖u−uh‖0 +‖u− û‖0. As shown in (35) (or see Table 1), the values
of ‖u − û‖0 approach to 0 as δ goes to zero. But from the error analysis (38)
we cannot affirm that the value ‖u−uh‖0 are affected by δ when δ is small. As
we see in Figure 1, the values of ‖u−uh‖0 are not influenced by the parameter
δ. It is proper that we select the acceleration parameter δ = 10−5 for fixed
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Figure 5. The graphes of the target function and numerical
solution uh and vh for α = 1, δ = 10−5 when h = 1/32 .

α = 1 according to Tables 1 and 2. Now, we fix δ = 10−5 for a moment to
investigate the effect of parameter α. Figure 2 shows the norm ‖uh − û‖0 of
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the error between the controlled optimal solution uh and the desired state û
and the norm ‖vh‖0 related to the control function plotted for different values
of α with a fixed δ = 10−5. As expected, as α becomes smaller, the norm vh

is forced to become smaller, and as is shown in Figure 2, the error ‖uh − û‖0
becomes less controlled. In this point of view, the choice of α = 1 and δ = 10−5

seems to be the best choice among the presented results. With these choices,
we exhibit L2-error ‖u−uh‖0 + ‖v− vh‖0 and H1- error ‖u−uh‖1 + ‖v− vh‖1
in Figure 3. Then convergence rates reported in Table 3 for the approximated
solution uh and vh by the multigrid V -cycle are measured by

log2

‖u− uh‖0 + ‖v − vh‖0
‖u− uh/2‖0 + ‖v − vh/2‖0

and log2

‖u− uh‖1 + ‖v − vh‖1
‖u− uh/2‖1 + ‖v − vh/2‖1

.

It is from Table 3 that the convergence rates are like O(h2) in L2 and O(h)
in H1. These facts imply that the resulting convergence rates asymptotically
approach to those of the theoretically predicted. Figure 4 illustrates that the
numerical optimal solution uh converging to the objective function û, which can
be evidently by pointwise error figure between uh and û. Specially, we display
the target function and numerical solutions uh and vh for α = 1, δ = 10−5

when h = 1
32 in Figure 5.

Table 4. The numerical results for the quadratic functional
with α = 1 when h = 1/32.

δ ‖uh − û‖0 ‖θh‖0 J (uh, θh)
1 4.9887e−001 2.3727e−002 1.2471e−001

10−1 4.8894e−001 2.3253e−001 1.2223e−001
10−2 4.0781e−001 1.9387e+000 1.0194e−001
10−3 1.5403e−001 7.2858e+000 3.8404e−002
10−4 2.2013e−002 1.0099e+001 5.3428e−003
10−5 2.6502e−003 1.0535e+001 5.5848e−004
10−6 5.8359e−004 1.0597e+001 5.6322e−005
10−7 4.2769e−004 1.0613e+001 5.7240e−006
10−8 4.1734e−004 1.0623e+001 6.5143e−007
10−9 4.1661e−004 1.0630e+001 1.4328e−007

Example 2. For the second numerical experiments for the model optimal
problem, we choose B as the identity matrix and the convection coefficient
b = [1, 1]t. First note that with the above B and b the constraint equation (2)
becomes a uniformly positive definite system. The corresponding optimality
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Figure 6. The norms ‖uh − û‖0 and ‖vh‖0 with δ = 10−7

when h = 1/32.

system is now

(39)
−∆u + b · ∇u + u− 1

δ
v = 0 in Ω,

−∆v −∇ · (vb) + v + αu = α sin πx sinπy in Ω,

u = 0, v = 0 on ∂Ω.

It is hard to solve the optimality equation (39) analytically. Moreover, it is
well known that for convection dominated problems standard finite element
discretizations applied to (39) lead to strongly oscillatory solutions unless the
mesh size h is sufficiently small with respect to the ratio between the rate
of convection of a flow and the rate of diffusion. For this reason, we adopt
standard finite element discretization with stabilization used in [2, 15] and use
the notations in theirs. Since the Peclet number Pe = h||b|| =

√
2h < 1 for

h < 1
2 , the positive stabilization parameter is equal to zero. Thus, it follows

that the bilinear form (5) is the stabilization bilinear form of the optimality
system (39).

As the example 1, we fix α = 1. Then we display the errors between the
numerical solution uh and the target velocity û for α = 1 in Table 4.

As seen in Table 4, we can choose δ = 10−7 as an optimal weight of the
cost of the control for fixed α = 1 if we deliberate on the stability of the norm
‖θh‖0 of control function. In addition, we can figure out from Figure 6 that, for
fixed δ = 10−7, α = 1 seems to be the best choice among the presented results.
Finally, we plot the pointwise error figure in Figure 7 and illustrate the target
state, the numerical solution uh and vh when α = 1 and δ = 10−7 for h = 1/32
in Figure 8.

5. Conclusion

We have shown that the coupled optimal system can be solved well by multi-
grid methods. As pointed in (38), one may not allow δ to be arbitrary small for
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Figure 8. The graphes of the target function and numerical
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a give mesh size. But, for a reasonable approximation to a given objective func-
tion, it is explained that it is enough to choose a relative small δ. For a coupled
elliptic boundary value problem, the V -cycle multigrid convergence analysis is
provided in case that those equations are coupled with reaction terms. One
may try to provide the similar convergence analysis for those equations cou-
pled by diffusion terms. One may also decompose the coupled optimal system
(4) into an uncoupled optimal system for numerical implementations. In this
case, one may have some restrictions on the weights α and δ of the cost of the
controls even for a simple diffusion-reaction control problem. This topic will
be dealt with in a coming paper.
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