
J. Korean Math. Soc. 47 (2010), No. 1, pp. 41–62
DOI 10.4134/JKMS.2010.47.1.041

STABILITY COMPUTATION VIA GRÖBNER BASIS

Brendan Hassett, Donghoon Hyeon, and Yongnam Lee

Abstract. In this article, we discuss a Gröbner basis algorithm related
to the stability of algebraic varieties in the sense of Geometric Invariant
Theory. We implement the algorithm with Macaulay 2 and use it to
prove the stability of certain curves that play an important role in the
log minimal model program for the moduli space of curves.

1. Introduction and preliminaries

In this article, we discuss a Gröbner basis algorithm related to the stability
of algebraic varieties in the sense of Geometric Invariant Theory. We implement
the algorithm with Macaulay 2, and give some applications to the moduli theory
of curves.

Given an algebraic group G acting on a projective variety X linearized by a
line bundle L, the stability of a point x ∈ X can be determined by examining its
stability with respect to one-parameter subgroups ρ : Gm → G. For each ρ, we
let ρ(α).x specialize to a point x? ∈ X and look at the character with which G
acts on the fibre Lx? : If the character is negative (resp. positive, nonnegative),
then x and x? are stable (resp. unstable, semistable) with respect to ρ. The
negative of this character is called the Hilbert-Mumford index µL(x, ρ) of x
with respect to ρ. Assuming L is very ample, X is a closed subvariety of
PN := P(Γ(L)) and the Hilbert-Mumford index of x with respect to ρ admits
the following simple description:

µL(x, ρ) = −min{wtρ(xi) |xi(x) 6= 0},
where xi’s are homogeneous coordinates of PN that diagonalize the action of
ρ.

While computing the Hilbert-Mumford index of a given point in a projec-
tive space is simple and does not require an algorithm, this becomes quite a
daunting task if the ‘point’ is itself complicated, sitting inside a large projective
space. Our object of study in this paper is the prime example: In many moduli
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problems, algebraic geometers use the Hilbert scheme that parametrizes sub-
schemes, and describing its points is not suitable for manual computation even
for relatively simple subvarieties of a projective space of reasonable size: for
instance, describing Hilbert points of genus two, degree six curves in P4 using
degree two generators would require 1365 variables!

The main algorithm in this paper uses Gröbner bases to effectively compute
the Hilbert-Mumford index of the Hilbert point of a variety. The algorithm is
implemented with Macaulay 2 in §2.2: Interested readers are invited to copy
and paste the code mumfordIndex and use it to verify our computations or to
carry out other stability computations. The Macaulay 2 script is available at
http://www.science.marshall.edu/hyeond.

As an application, we use the algorithms to prove the stability (with respect
to a ρ) of certain curves of genus two with cusps, which play an important role
in the geometry of the moduli space of tri-canonical curves [8]. We also prove
the instability of the bicanonical elliptic bridges (Definition 5), which was used
in working out the GIT of bi-canonical curves [6, Proposition 10].
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2. Hilbert-Mumford index of Hilbert points

Let X ⊂ PN = P(V ) be a projective variety with Hilbert polynomial P
and Hilb, the component containing X of the Hilbert scheme parametrizing
the subschemes of PN that have Hilbert polynomial P . We let [X] denote the
Hilbert point of X in Hilb.

For m À 0, we have a projective embedding

(2.1) φm : Hilb ↪→ Gr(P (m), SymmV ∗) ↪→ P := P




P (m)∧
SymmV ∗


 .

The mth Hilbert point [X]m of X is the image φm([X]) in P.
Let x0, . . . , xN be homogeneous coordinates for PN . Let Bm denote the

monomial basis {xa =
∏N

i=0 xai
i | ∑

ai = m} of SymmV ∗. The exterior prod-
ucts

xa(1) ∧ xa(2) ∧ · · · ∧ xa(P (m)), xa(i) ∈ Bm
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form a basis Wm for
∧P (m)

SymmV ∗.
Let ρ′′ : Gm → SLN+1(k) be a one-parameter subgroup. If x0, . . . , xN

diagonalize the action of ρ′′, that is,

ρ′′(t) · xi = tr
′′
i xi, r′′0 ≥ · · · ≥ r′′N ,

∑
r′′i = 0,

then the bases Bm and Wm diagonalizes the action of ρ′′ on SymmV ∗ and∧P (m)
SymmV ∗: For xa :=

∏N
i=0 xai

i , we have

ρ′′(t) · xa = twtρ′′ (x
a)xa, wtρ′′(xa) =

N∑

i=0

r′′i ai.

For M = xa(1) ∧ xa(2) ∧ · · · ∧ xa(P (m)),

ρ′′(t) ·M = twtρ′′ (M)M, wtρ′′(M) =
P (m)∑

j=1

wtρ′′(xa(j)).

By definition, the Hilbert-Mumford index is

(2.2) µ([X]m, ρ′′) = max{−wtρ′′(M) |M 6= 0 on [X]m}.
Let ρ : Gm → GLN+1(k) be the associated one-parameter subgroup with
weights ri = r′′i −r′′N such that r0 ≥ r1 ≥ · · · ≥ rN = 0 and r′′i = ri− 1

N+1

∑
rj .

In practice, we frequently start with a 1-PS ρ of GLN+1(k) with weight ri and
compute the Hilbert-Mumford index with respect to the 1-PS ρ′ of SLN+1(k)
with integral weights (N + 1)ri −

∑
rj . Note that the weights ri − 1

N+1

∑
rj

may not be integral but µ([X]m, ρ′′) still makes sense and since ρ′ = (N +1)ρ′′,
the (semi)stability with respect to ρ′ is equivalent to the (semi)stability with
respect to ρ′′.

Given M ∈ Wm, the ρ-weight and the ρ′-weight of M are related by

(2.3) wtρ′(M) = (N + 1)wtρ(M)− r ·m · P (m),

where r =
∑N

i=0 ri. Combining (2.2) and (2.3), we obtain

(2.4) µ([X]m, ρ′) = (N + 1) ·max{−wtρ(M) |M 6= 0 on [X]m}+ r ·m ·P (m).

For notational convenience, we define µ([X]m, ρ) := µ([X]m, ρ′).

2.1. A Gröbner basis algorithm for computing the Hilbert-Mumford
index

This algorithm seems to have been known to certain experts (see [1] and
[2]). Indeed, Lemma 3.3 and Corollary 3.4 of [2] deal with the generic case
of our Proposition 1. We write the details here in a form convenient for our
application.

Given a one-parameter subgroup ρ of GLN+1(k) such that ρ(α) ·xi = αrixi,
r0 ≥ r1 ≥ · · · ≥ rN = 0, introduce the following ρ-weighted graded lexi-
cographic order, denoted simply by ‘≺’. This is a total order on the set of
monomials {xa} defined by declaring that xa ≺ xb if
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(1) deg xa < deg xb or
(2) deg xa = deg xb and wtρ(xa) < wtρ(xb) or
(3) deg xa = deg xb and wtρ(xa) = wtρ(xb) and aj < bj , where

j = min{i | ai 6= bi}.
Given f ∈ S := k[x0, . . . , xN ], we let in≺(f) denote the term of f with maximal
order. For an ideal I of S, we let

in≺(I) := 〈in≺(f) | f ∈ I〉.
Let IX be the homogeneous ideal of a subscheme X ⊂ PN . Note that the mono-
mials {xa(1), . . . , xa(P (m))} that are not in in≺(IX) form a basis of (S/IX)m

and (S/in≺(IX))m.

Proposition 1. The Hilbert-Mumford index of the mth Hilbert point of X with
respect to the associated one-parameter subgroup ρ′ of SLN+1(k) is:

(2.5) µ([X]m, ρ′) = −(N + 1)
P (m)∑

i=1

wtρ(xa(i)) + m · P (m) ·
N∑

j=0

rj ,

where {xa(1), . . . , xa(P (m))} are degree m monomials not in in≺(IX)

Proof. Let Z = {xb(1), . . . , xb(P (m))} be another P (m)-element subset of Bm

that gives rise to a basis for (S/IX)m. Note that Z being a basis is equivalent
to that xb(1) ∧ · · · ∧ xb(P (m)) is nonzero on the Hilbert point [X]m. Consider
the normal form

∑P (m)
j=1 cijx

a(j) of xb(i) determined uniquely by

xb(i) ≡
P (m)∑

j=1

cijx
a(j) (mod IX), cij ∈ k.

Since both {xa(1), . . . , xa(P (m))} and Z are bases for the quotient space (S/IX)m,
the matrix (cij) is invertible. This allows us to reorder xb(i)’s as follows:
Determine τ1 by the condition that the τ1th row contains the pivot element
of the matrix (cij), where pivot is simply the first nonzero entry of the first
column such that the corresponding minor (in the cofactor expansion along
the first column) is not zero. Then we inductively define τj ’s: Given new
{b(τ1), . . . , b(τj−1)}, we define τj by the condition that the τjth row contains
the pivot of the (P (m)− j +1)× (P (m)− j +1) matrix obtained from (cij) by
deleting the rows and columns that contain the first j − 1 pivots. Our choice
of τi’s insures that after the reordering, we have a one to one correspondence
xa(i) 7→ xb(τi) between {xa(1), . . . , xa(P (m))} and Z such that

xb(τi) ≡
P (m)∑

k=1

c′ikxa(k) (mod IX),
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where c′ik := cτik and c′ii 6= 0. It follows that

wtρ (in≺ (gi)) = wtρ(xb(τi)) ≥ wtρ(xa(i)), gi := xb(τi) −
P (m)∑

k=1

c′ikxa(k) ∈ IX .

Hence
P (m)∑

i=1

wtρ(xb(τi)) ≥
P (m)∑

i=1

wtρ(xa(i))

and the assertion follows from (2.4). ¤

The proposition translates into the following stability statements:

Corollary 1. [X]m is stable (resp. semistable) with respect to ρ if and only if
∑

wtρ(xa(i)) < (resp. ≤)
mP (m)
N + 1

∑
ri.

In terms of the corresponding one-parameter subgroup ρ′ of SLN+1(k),

Corollary 2. [X]m is stable (resp. semistable) with respect to ρ′ if and only if
P (m)∑

i=1

wtρ′(xa(i)) < (resp. ≤)0.

The upshot of the formula (2.5) is that the monomials xa(1), . . . , xa(P (m))

can be systematically computed by using Gröbner basis and can easily be im-
plemented with a computer algebra system.

Moreover, considering the functoriality of the Hilbert-Mumford index and
the tautological ring of the Hilbert scheme reveals that one only needs to com-
pute the Hilbert-Mumford index for mth Hilbert points for finitely many m to
obtain the Hilbert-Mumford indices for all m. The results in the remainder of
the section are taken from [5].

Proposition 2. Let X, ρ, {xa(1), . . . , xa(P (m))} be as before. The filtered
Hilbert function PX,ρ on Z defined by

PX,ρ(m) =
P (m)∑

i=1

wtρ′(xa(i))

is a polynomial in m for m À 0.

Proof. For m À 0, we have the Grothendieck embedding (2.1) such that
φ∗mO(+1) = det π∗OX (m), where π : X → Hilb is the universal variety. Let n
be the dimension of X. There are Cartier divisors ([10]) L0, . . . , Ln+1 on Hilb
such that

detπ∗OX (m) =
n+1∑

i=0

(
m

i

)
Li
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and it follows from the functoriality of the Hilbert-Mumford index that

µφ∗mO(+1)([X]m, ρ) =
n+1∑

i=0

(
m

i

)
µLi([X], ρ)

which is a polynomial in m. ¤

When this is put into practice to actually compute µ([X]m, ρ) for all m,
one needs to somehow determine M for which PX,ρ(m) is a polynomial for all
m ≥ M . An obviously necessary condition is that the mth Hilbert point of X
be defined, which leads us to the Castelnuovo-Mumford regularity:

Proposition 3. If X and limt→0 ρ(t) ·X are M -regular, then we have

PX,ρ(m) =
n+1∑

i=0

(
m

i

)
µLi([X], ρ)

for m ≥ M .

A very useful corollary of this is:

Corollary 3. Let C ⊂ P(V ) be a projective variety, ρ : Gm → SL(V ) a one-
parameter subgroup, and C?, the variety to which ρ(t).C specializes. Suppose
that C and C? satisfy

(1) C (resp. C?) is connected of pure dimension one;
(2) V ∗ → Γ(OC(1)) (resp. Γ(OC?(1))) is an isomorphism;
(3) OC (resp. OC?) is 2-regular.

Then for each m ≥ 2 we have
(2.6)

µ([C]m, ρ)=(m−1)
((

1
2
µ([C]3, ρ)− µ([C]2, ρ)

)
m + 3µ([C]2, ρ)− µ([C]3, ρ)

)
.

Proof. (1) and (3) together imply that µ([C]m, ρ) is a polynomial in m for
m ≥ 2. (2) implies that detπ∗OX (1) = L0 +L1 is trivial, and the formula (2.6)
follows immediately. ¤

The conditions in the above corollary are satisfied by a large class of curves,
including the c-semistable curves, i.e., reduced complete connected curves C
such that

• C has nodes, ordinary cusps and tacnodes as singularities;
• the dualizing sheaf ωC is ample;
• C does not have a genus-one connected subcurve that meets the rest

of the curve in one point not counting multiplicity.

Corollary 4. Let C be a bicanonical c-semistable curve, i.e., a c-semistable
curve embedded by the bicanonical system

∣∣ω⊗2
C

∣∣ :

C ↪→ PΓ(C,ω⊗2
C ) ' P(V ).
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Let C? denote the curve to which ρ(t).C specializes. If C? is also a bicanonical
c-semistable curve, then for all m ≥ 2, C is

(1) m-Hilbert stable if and only if µ([C]3, ρ) ≥ 2µ([C]2, ρ) > 0;
(2) m-Hilbert strictly semistable if and only if µ([C]3, ρ) = µ([C]2, ρ) = 0;
(3) m-Hilbert unstable if and only if µ([C]3, ρ) ≤ 2µ([C]2, ρ) < 0.

2.2. Macaulay 2 implementation

Here we give a Macaulay 2 [4] implementation of the algorithm according to
Proposition 1. The code has

Input: A homogeneous ideal I of a graded ring S and a weight vector w.

Output: A sequence consisting of

(1) The regularity reg(I) of I;
(2) Values of the filtered Hilbert function PX,ρ(m) for m < reg(I), where

X is the projective variety defined by I and ρ is the 1-PS whose weight
vector is w;

(3) The polynomial which coincides with PX,ρ(m) for m ≥ reg(I).

Function:

mumfordIndex = (I,w) -> (
S = ring I;
r = dim Proj(S/I);
regI = regularity resolution I;
MUm = (I,w,m) -> (
S = ring I;
N = numgens S;
K = coefficientRing S;
Sw = K[gens S, Weights => w, MonomialOrder => GLex];
W = map(Sw, S, vars Sw);
I = W(I);
P = hilbertPolynomial I;
inI = ideal leadTerm I;
Sbar = Sw/inI;
F = map(Sbar, Sw, vars Sbar);
Bm = basis(m, Sw);
-- Computes a basis of the degree m piece of Sw.
Bmbar = basis(m, Sbar);
-- Computes a basis of the degree m piece of Sbar.
Bm = flatten entries Bm;
PSm = #Bm;
monomialWeight = (f) ->
(expf = flatten exponents f;
sum(expf, w, times));

e = apply(0..(PSm-1),i->(if F(Bm_i)===F(0) then 0 else 1));
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TOTALWT = sum for i from 0 to PSm-1 list
product{monomialWeight(Bm_i), e_i};
-- Computes the total weight.
mu = sum{product{N,-TOTALWT}, product{m, P(m), sum w}}
-- Computes the Hilbert-Mumford index.
);

b = transpose matrix(QQ,table(1,r+2,(i,j)->MUm(I,w,regI + j)));
A = matrix(QQ,table(r+2,r+2, (i,j) -> (regI + i)^j));
c = A^(-1)*b;
QQ[m];
fHilbFun = sum(r+2, i->c_(i,0)*m^i);
-- Computes the filtered Hilbert polynomial.
if regI > 2 then
val = apply(i = 2..(regI-1), i->MUm(I,w,i))
else val = ();

print(regI, val, fHilbFun)
)

Remark 1. The subprogram MUm computes µ([X]m, ρ) for a given m. After run-
ning MUm, the initial ideal in≺(I) and the monomial basis {xa(1), . . . , xa(P (m))}
for (S/I)m can be retrieved with the commands inI and Bmbar, respectively.

2.3. State polytopes

In [2], Bayer and Morrison considered the weight polytope of the mth Hilbert
point [I]m :=

∧P (m)
SymmV ∗/Im: For a fixed maximal torus H ⊂ SLN+1(k),

the weight polytope is simply the convex hull of the characters of H that appear
in the weight decomposition. This is called the (mth) state polytope of I and
is denoted by Statem(I). The main theorem of [2] says that the vertices of
Statem(I) are precisely

∑

xa∈(in≺I)m

a, ≺ a monomial order.

Let ρ be a 1-PS of SLN+1(k) with weight vector w. It follows from the definition
of Statem(I) that

µ([I]m, ρ) = max{−w.v | v a vertex of Statem(I)}
and Proposition 1 says that the maximum is achieved precisely at the vertex
associated to in≺w(I), where ≺w is the w-weighted lexicographic total order
on the monomials.

State polytopes have received deserved attention after the fundamental work
[1] and [2]. Especially of our interest is [9] which proves that the Chow polytope
can be realized as a suitable limit of the state polytopes. The Chow polytope
Chow(I) of an ideal I is the weight polytope (with respect to a maximal torus)
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of the Chow form Ch(I). The precise statement is

lim
m→∞

(n + 1)!
mn+1

Statem(I) = Chow(I),

where n is the dimension of the projective variety defined by I. Let w ∈
RN+1 and consider the linear functional Lw(x) = −w.x. Since Lw achieves its
maximum on Statem(I) at the vertex associated to in≺w

(I)m, its maximum
on Chow(I) is achieved at

lim
m→∞

(n + 1)!
mn+1

∑

xa∈in≺w (I)m

a.

It follows that:

Corollary 5 ([11], Corollary 3.5). For any 1-PS ρ of SLN+1(k), we have

lim
m→∞

(n + 1)!
mn+1

µ([I]m, ρ) = µ(Ch(I), ρ).

In particular, if a projective variety is asymptotically Hilbert semistable, then
it is Chow semistable.

3. Applications

In this section, we shall give two concrete applications of the algorithm
developed in the previous section. These examples played important roles in
our work on moduli problems of ν-canonical curves for ν = 2, 3 [7, 8, 6, 5].

3.1. The rational bicuspidal curve of genus two

When constructing a moduli space, one hopes to avoid objects with infinite
automorphisms as the moduli space often fails to be separated at such points.
Fortunately, such objects are often destablized by a one-parameter subgroups
of the automorphism group. However, if the object is not destabilized by one
of these subgroups, then it has a rather good chance of being semistable. In
the moduli problem of tri-canonical curves of genus two [8], the rational curve
C0 with two cusps and no other singularities turns out to be at the focal point
of the whole problem: It is the only pseudo-stable curve ([12]) with infinite
automorphisms to which other cuspidal pseudo-stable curves specialize under
the action of Aut(C0) (Figure 1).

In this section, we test C0 against the one-parameter subgroups ρ coming
from Aut(C0) and show that it is Hilbert strictly semistable with respect to
ρ. Then we prove in §3.2 that [C0]m is the flat limit of the families {ρ(α) ·
[C ′]m} where C ′ is any other pseudo-stable cuspidal curve. This implies that
all cuspidal curves are strictly semistable with respect to ρ, and that all such
curves are semistable if one of them is. The results in this section appeared
without computational details in [8] where we proved that these curves are
semistable using a standard degeneration argument.
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We first find a normalization map for C0 from the classical projective geo-
metric construction of a cusp. Let ν6(P1) denote the rational sextic curve

ν6 : P1 → P6

[s, t] 7→ [
s6, s5t, s4t2, s3t3, s2t4, st5, t6

]
.

To create a cusp at ν6(0) = [0, . . . , 0, 1], we project ν6(P1) from [0, . . . , 0, 1, 0]
on the tangent line Tν6(0)ν6(P1) = {X0 = · · · = X4 = 0}. The image under
this projection is

π[0,...,0,1,0] ◦ ν6(P1) = {[s6, s5t, s4t2, s3t3, s2t4, t6] | [s, t] ∈ P1}.
We successively project C ′ from [0, 1, 0, . . . , 0] ∈ T[1,0,...,0]C

′ = {X2 = · · · =
X5 = 0} and get

C0 = {[s6, s4t2, s3t3, s2t4, t6] | [s, t] ∈ P1}
which has ordinary cusps at [0, . . . , 0, 1] and [1, 0, . . . , 0]. From this, it is clear
that C0 admits automorphisms coming from automorphisms [s, t] 7→ [αs, t],
α ∈ Gm, of P1. Such an automorphism corresponds to the one-parameter
subgroup ρ of GL5(k) with weights (6, 4, 3, 2, 0). We shall prove that [C0]m is
semistable with respect to ρ, for all m, via an explicit computation of Hilbert-
Mumford index µ([C0]m, ρ). Although this can be done by simply plugging the
ideal of C0 and w = {6, 4, 3, 2, 0} in mumfordIndex (§2.2), we shall first carry
out the algorithm step by step and present the computations in a traditional
manner as if we did them by hand.
• We first find the ideal IC0 of C0 from the parametrization map:

IC0 = 〈−x1x4 + x2
3,−x0x4 + x1x3,−x0x4 + x2

2,−x0x3 + x2
1〉.

• We compute a Gröbner basis for IC0 with respect to the ρ-weighted GLex:

x1x4 − x2
3, x0x4 − x2

2, x1x3 − x2
2, x0x3 − x2

1, x2
2x4 − x3

3, x0x
2
2 − x3

1.

• The leading terms of the Gröbner basis elements are:

x1x4, x0x4, x1x3, x0x3, x
2
2x4, x0x

2
2.

These generate the initial ideal in≺(IC0).
• The degree 2 monomials not in the initial ideal are:

(3.1) x2
0, x0x1, x0x2, x2

1, x1x2, x2
2, x2x3, x2x4, x2

3, x3x4, x2
4.

These monomials have total weight 66. On the other hand, we have

P (2) · 2
5

4∑

i=0

ri =
11 · 2

5
· 15 = 66.

Therefore, by Proposition 1, the 2nd Hilbert point of the tri-canonical image
of C0 is at best strictly semistable with respect to ρ. Similarly, we find that
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the degree three monomials not contained in the initial ideal in≺(IC0) are:

x3
0, x2

0x1, x2
0x2, x0x

2
1, x0x1x2, x3

1, x2
1x2, x1x

2
2, x3

2,
x2

2x3, x2x
2
3, x2x3x4, x2x

2
4, x3

3, x2
3x4, x3x

2
4, x3

4

of which total weight is 153. On the other hand, we have

P (3) · 3
5

·
4∑

i=0

ri =
17 · 3

5
· 15 = 153.

Therefore, by Proposition 1, the 3rd Hilbert point of the tri-canonical image
of C0 is strictly semistable with respect to ρ. Now it follows from Corollary 4
that C0 is m-Hilbert strictly semistable for all m ≥ 2.

Remark 2 (µ([C0]m, ρ) as computed by Macaulay 2). First, compute the ideal
of C0:

i12 : P1 = QQ[s,t];
i13 : P4 = QQ[x_0..x_4];
i14 : f = map(P1,P4,{s^6,s^4*t^2,s^3*t^3,s^2*t^4,t^6})

6 4 2 3 3 2 4 6
o14 = map(P1,P4,{s , s t , s t , s t , t })
o14 : RingMap P1 <--- P4
i15 : C0 = kernel f

2 2 2
o15 = ideal (x - x x , x x - x x , x - x x , x - x x )

3 1 4 1 3 0 4 2 0 4 1 0 3
o15 : Ideal of P4

Run mumfordIndex to compute the filtered Hilbert function PC0/ρ(m):

i7 : mumfordIndex(C0, {6,4,3,2,0})
(2, (), 0)

Reading the output sequence, the regularity of C0 is 2 and the filtered Hilbert
function PC0/ρ(m) agrees with the zero polynomial for all m ≥ 2 (hence
the empty sequence () in the second entry). Thus C0 is m-Hilbert strictly
semistable for all m ≥ 2.

We can run the subprogram MUm to find µ([C0]m, ρ) for m = 2, 3 and the
monomials not in the initial ideal:

i8 : MUm(C0, {6,4,3,2,0}, 2)
o8 = 0
i11 : inI

2 2
o11 = ideal (x x , x x , x x , x x , x x , x x )

1 4 0 4 1 3 0 3 2 4 0 2
o11 : Ideal of Sw

The degree two monomials not in the initial ideal are
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i12 : Bmbar
o12 = | x_0^2 x_0x_1 x_0x_2 x_1^2 x_1x_2 x_2^2 x_2x_3 x_2x_4

x_3^2 x_3x_4 x_4^2 |
1 11

o12 : Matrix Sbar <--- Sbar

whose weights sum up to
i13 : TOTALWT
o13 = 66

Similarly, we compute µ([C0]3, ρ) by
i14 : MUm(C0, {6,4,3,2,0}, 3)
o14 = 0

The degree 3 monomials not in the initial ideal are
i15 : Bmbar
o15 = | x_0^3 x_0^2x_1 x_0^2x_2 x_0x_1^2 x_0x_1x_2 x_1^3

x_1^2x_2 x_1x_2^2 x_2^3 x_2^2x_3 x_2x_3^2 x_2x_3x_4
x_2x_4^2 x_3^3 x_3^2x_4 x_3x_4^2 x_4^3 |

1 17
o15 : Matrix Sbar <--- Sbar

and their weights sum up to
i16 : TOTALWT
o16 = 153

3.2. Degeneration of cuspidal curves

There are three types of genus two pseudo-stable curves with a cusp:
(a) C0, the rational curve with two cusps;
(b) C ′0, the rational curve with a cusp and a node;
(c) C1, a curve with one cusp and no other singularities, normalized by a

smooth elliptic curve.
In this section, we shall prove C ′0 and C1 specialize to C0 under the ρ-action.
Since C ′0 is in the closure of the locus of C1 in the Hilbert scheme, we only need
to prove it for C1.

3.2.1. Flat limit of ρ(α).[C1]. Computation of flat limits is rather well known
(cf. [2]). We quickly recapitulate the algorithm here: Given S = k[x0, . . .,
xN ] and a one-parameter subgroup ρ : Gm → GLN+1(k) defined by ρ(α).xi =
αwtρ(xi)xi, we define the graded ρ-weight order ≺ρ as follows: let xa and xb be
monomials. Then xa ≺ρ xb if

(1) deg xa < deg xb or
(2) deg xa = deg xb and wtρ(xa) < wtρ(xb).

Note that ≺ρ is a partial order and ≺ in §2.1 is a total order that refines ≺ρ.

Given g =
∑

caxa ∈ S, and a homogeneous ideal I of S, we define
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C' C

C

0 1

0

.

Figure 1. C1 and C ′0 degenerate to C0 along the action of ρ

(a) in≺ρ(g) is the sum of the terms (of g) of maximal order1;
(b) in≺ρ(I) := 〈in≺ρ(f) | f ∈ I〉;
(c) g̃(x0, . . . , xN , α) := αbg(α−r0x0, . . . , α

−rN xN ), b = max{wtρ(xa) | ca 6=
0};

(d) Ĩ := 〈g̃, g ∈ I〉 ⊂ S[α].
Note that for a fixed α 6= 0, Iα = 〈g̃ | g ∈ I〉 is the ideal defining ρ(α).C, where
C ⊂ PN is the projective variety defined by I. The problem at hand is to
compute the ideal of the limit variety of the family ρ(α).C as α tends to zero.
First, we have:

Theorem 3 ([3], p. 343). For any ideal I ⊂ S, the k[α]-algebra S[α]/Ĩ is free
as k[α]-algebra. Furthermore, we have

S[α]/Ĩ ⊗k[α] k[α, α−1] ' (S/I)[α, α−1],
S[α]/Ĩ ⊗k[α] k[α]/(α) ' S/in≺ρ(I).

This means precisely that Ĩ is the homogeneous ideal of the flat projective
closure in PN of the family ρ(α).C, and that the flat limit is given by the initial
ideal in≺ρ(I). These ideals can be readily computed by using Gröbner basis:

Proposition 4 ([3], p. 369). Let {g1, . . . , gt} be a Gröbner basis for I with
respect to ≺ (§2.1). Then

(1) g̃1, . . . , g̃t generate Ĩ;
(2) in≺ρ(g1), . . . , in≺ρ(gt) generate in≺ρ(I).

1Bayer and Mumford take the minimal weight term to be the initial term. Here we are
using the dual action of ρ on the ideal, hence the reversal of the signs of the weights.
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Remark 4. This algorithm can be easily implemented with Macaulay 2. The
following function flatLimit takes an ideal I and a weight vector w, and com-
putes the projective closure tI and the flat limit of the one-parameter family
ρ(α).I, α ∈ C∗, where ρ is the one-parameter subgroup with the prescribed
weight vector w. The Gröbner basis computation occurs in saturate(I,a).
flatLimit = (I,w) -> (

R = ring I;

N = numgens R - 1;

K = coefficientRing R;

Ra = K[gens R, a];

wmax = max w;

f = map(Ra, R, gens ideal apply(0..N, j -> a^(wmax-w_j)*(gens Ra)_j));

-- the new weights wmax-w_j corresponds to those

of the inverse of lambda

I = f(I);

tI = saturate(I,a);

substitute(tI, {a=>0})

)

Using this algorithm, we shall prove that limα→0 ρ(α).C1 = C0.
(A) We first compute the ideal of C1. Let ν : Cν

1 → C1 be the normalization of
C1 and p ∈ Cν

1 be the closed point over the cusp q of C1. The dualizing sheaf
ωC1 can be expressed

ωC1(U)=

8
<
:ζ ∈ ωCν

1
(ν−1U)

˛̨
˛̨
˛̨
X

y∈ν−1(x)

Resy(ν∗f · ζ)=0 for all x ∈ U and f ∈ OC1,x

9
=
;

to an open set U ⊂ C1. It follows that ν∗ωC1 = ωCν
1
(2p) = OCν

1
(2p) and

ν∗OC1(1) ' OCν
1
(6p). This means that the tri-canonical image of C1 is given

by a g4
6 of Cν

1 . In other words, C1 is the image of a suitable projection

P(Γ(Cν
1 ,OCν

1
(6p))) 99K P4

following the embedding η : Cν
1 ↪→ P(Γ(Cν

1 ,OCν
1
(6p))) = P5 given by |OCν

1
(6p)|.

The projection is from a point on the tangent line Tp(Cν
1 ), creating the cusp q.

Consider the normal form E := {x2
0x2 = x1(x1 − x2)(x1 − `x2)} ⊂ P2 of Cν

1

given by |OCν
1
(3p)|, where p = [1, 0, 0]. Then η(Cν

1 ) ⊂ P5 is the image of E
under the second Veronese embedding

(?)
v2 : P2 −→ P5

[x0, x1, x2] 7→ [
x2

0, x0x1, x
2
1, x0x2, x1x2, x

2
2

]
.

The tangent line T to E at p is {x2 = 0}. If y0, . . . , y5 are the homogeneous
coordinates of P5 in (?), the second Veronese image of T is given by the ideal
〈y3, y4, y5, y

2
1 − y0y2〉. Hence the tangent line to v2(T ) at p = η([1, 0, 0]) =

[1, 0, . . . , 0] is {y0 = y3 = y4 = y5 = 0} and y1 is a local parameter of v2(T ) at
p. Since v2(T ) and η(Cν

1 ) agree to order one, it follows that the tangent line
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to η(Cν
1 ) at p = η([1, 0, 0]) = [1, 0, . . . , 0] is {y0 = y3 = y4 = y5 = 0} and y1 is

a local parameter of Oη(Cν
1 ),p. Therefore, the projection

pr : P5 99K P4

[y0, . . . , y5] 7→ [y0, y2, y3, y4, y5]

kills the tangent direction and replaces p with a cusp.
The ideal Iv2(E) of η(Cν

1 ) = v2(E) ⊂ P5 is generated by:

y2
1 − y0y2, y2

4 − y2y5, y3y4 − y1y5, y2
3 − y0y5, y2y3 − y1y4, y1y3 − y0y4,

y2y4`− y4y5`− y2
2 + y0y4 + y0y5 + y2y5, y2y5`− y4y5`− y2y4 + y0y5 + y2y5,

y1y4`− y1y5`− y1y2 + y0y3 + y1y4.

The ideal of pr ◦ η(Cν
1 ) ⊂ P4 is the kernel of the homomorphism

k[z0, . . . , z4] → k[y0, . . . , y5]/Iv2(E)

(z0, . . . , z4) 7→ (y0, y2, y3, y4, y5).

It is generated by:

z2
3 − z1z4, z2

2 − z0z4, z1z4`− z3z4`− z1z3 + z0z4 + z1z4,
z1z3`− z3z4`− z2

1 + z0z3 + z0z4 + z1z4.

(B) Second, we compute the Gröbner basis of IC1 with respect to the total
weight order:

(3.2)

z1z4 − z2
3 , z1z3 − z2

2 − z2
3`− z2

3 + z3z4`, z0z4 − z2
2 ,

z0z3 − z2
1 + z2

2` + z2
2 + z2

3`2 + z2
3` + z2

3 − z3z4`
2 − z3z4`,

z2
2z4 − z3

3 + z2
3z4` + z2

3z4 − z3z
2
4`,

z0z
2
2 − z3

1 + 2z1z
2
2` + 2z1z

2
2 + z2

2z3`
2 + z2

2z3

+z3
3`3 + z3

3`2 + z3
3` + z3

3 − z2
3z4`

3 − z2
3z4`

2 − z2
3z4`.

(C) From (B) we obtain a Gröbner basis for ĨC1 with terms without α under-
lined:

z3z4`α
4 − z2

3`α2 − z2
3α2−z2

2 + z1z3, −z2
2 + z0z4, −z2

3 + z1z4,

−z3z
2
4`α4 + z2

3z4`α
2 + z2

3z4α
2−z3

3 + z2
2z4,

−z3z4`
2α6 − z3z4`α

6 + z2
3`2α4 + z2

3`α4 + z2
3α4 + z2

2`α2 + z2
2α2−z2

1 + z0z3,

−z2
3z4`

3α8 − z2
3z4`

2α8 + z3
3`3α6 − z2

3z4`α
8 + z3

3`2α6 + z3
3`α6

+z2
2z3`

2α4 + z3
3α6 + z2

2z3α
4 + 2z1z

2
2`α2 + 2z1z

2
2α2−z3

1 + z0z
2
2 .

(D) Substituting α = 0, we obtain the ideal of the flat limit:

〈z2
3 − z1z4, z1z3 − z0z4, z

2
2 − z0z4, z

2
1 − z0z3〉.

This is precisely the ideal of the tri-canonical model of C0, regardless of `.
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3.3. Hilbert unstable curves - Instability of elliptic bridges

Definition 5. An elliptic tail (resp. elliptic bridge) is a connected subcurve
of arithmetic genus one meeting the rest of the curve in one node (resp. two
nodes).

1

g-2

1
i

g-i-1

(    ) (    )0 iT T

Figure 2. Generic elliptic bridges

In this section, we shall prove that a bicanonically embedded elliptic bridge is
Hilbert unstable. Readers looking for context as to why this particular stability
problem is important are invited to take a look at [5] and [6].

Let C be a generic elliptic bridge of genus g consisting of a genus g−2 curve
D meeting in two nodes q and r with a genus one subcurve E.

Proposition 5. Let C0 be the curve in Figure 3 consisting of D and two conics
C1 and C2, where D is embedded by |ω⊗2

D (2q + 2r)| and C1 and C2 meet D in
nodes q and r respectively and meet each other in a tacnode. Then there is a
one-parameter subgroup ρ : Gm → SLN+1 such that

(1) ρ(t).C specializes to a bicanonical c-semistable curve C0;
(2) PC0,ρ(m) = −3(g − 1)(m− 1). In particular, C0 is Hilbert unstable.

Since PC,ρ(m) = PC0,ρ(m), it follows that C is also Hilbert unstable.

Proof. Note that ω⊗2
C |D = ω⊗2

D (2q+2r) and ω⊗2
C |E = OE(2q+2r), which imply

that D and E are embedded in linear subspaces of P3g−4 of dimensions 3g − 6
and 3, respectively. Hence we can choose coordinates such that

xN−1 = xN = 0 on D,
x0 = · · · = xN−4 = 0 on E.

We can extract equations for E embedded by |2q + 2r| by argument similar to
extracting the normal form of elliptic curve embedded in P2 by |3p0|.
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E'

q

r

D

Figure 3. Flat limit of ρ(t).C

Let {1q, x} and {1r, y} be bases for Γ(2q) and Γ(2r), respectively. We may
assume that 2q 6≡ 2r: we first prove that an elliptic bridge with 2q 6≡ 2r is
unstable, and can deduce that an elliptic bridge with 2q ≡ 2r is also unstable
since the unstable locus is closed. Under this assumption, we can choose x and
y such that x ∈ Γ(2q − r) and y ∈ Γ(2r − q) and hence the vanishing order at
q and r (on E) are as follows:

1q x 1r y
ordq 2 0 0 1
ordr 0 1 2 0

(3.3)
x · 1r y · 1q xy 1q · 1r

ordq 0 3 1 2
ordr 3 0 1 2

Let xN−3 = x · 1r, xN−2 = y · 1q, xN−1 = xy and xN = 1q · 1r. One sees
immediately that the image of E under |2q + 2r| lies on the Segre surface

{f1 := xN−3xN−2 − xN−1xN = 0}.
Also, since dim Γ(4q + 4r) = 8, there is a nontrivial linear relation between the
9 elements

1 x y xy x2 y2 x2y xy2 x2y2

x2
N xN−3xN xN−2xN xN−3xN−2 x2

N−3 x2
N−2 xN−3xN−1 xN−2xN−1 x2

N−1

Let f2 denote a linear relation:

f2 := c0x
2
N−3 + c1xN−3xN−1 + c2xN−3xN + c3x

2
N−2 + c4xN−2xN−1

+c5xN−2xN + c6x
2
N−1 + c7xN−1xN + c8x

2
N .

Because of our choice of coordinates that have specific vanishing orders at q
and r, it follows that

(A) TqE = {x0 = · · · = xN−4 = xN−2 = xN = 0}, q = [0, . . . , 0, 1, 0, 0, 0] ,

(B) TrE = {x0 = · · · = xN−4 = xN−3 = xN = 0}, r = [0, . . . , 0, 0, 1, 0, 0] .

(A) implies that c0 = c1 = 0 and c2 6= 0 while (B) forces c3 = c4 = 0 and
c5 6= 0. Moreover, for E to be smooth, c6 must not be zero.
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Taking all these into account, the generic form of f2 is as follows.

f2 = x2
N−1 + xN−3xN + xN−2xN + c1xN−1xN + c2x

2
N , ci ∈ k.

The j-invariant of E can be computed by realizing it as a double cover of P1

([7]) via E ↪→ P1 × P1 π→ P1, where π is the projection to one of the factors:

j(E) =
−2833(c2

1 − 12c2)3

4(c2
1 − 12c2)3 + 27(2c3

1 − 72c1c2 − 2433)
.

Let ρ : Gm → GLN+1(k) be a one-parameter subgroup defined by the diagonal
matrix

(3.4) ρ(t) =




t2

. . .
t2

t
1




.

To compute µ([C]m, ρ), we shall first compute the ideal of the flat limit C0 of
the family ρ(t).C.

For fixed t 6= 0, the two generators f1 and f2 of the ideal of C give rise to

f̃1(x0, . . . , xN ) = t4f1(t−2x0, t
−2x1, . . . , t

−2xN−2, t
−1xN−1, xN )

= xN−3xN−2 − t3xN−1xN Ã xN−3xN−2 = in≺ρ(f1),
f̃2(x0, . . . , xN ) = t2f1(t−2x0, t

−2x1, . . . , t
−2xN−2, t

−1xN−1, xN )
= x2

N−1 + xN−3xN + xN−2xN + tc1xN−1xN + t2c2x
2
N

Ã x2
N−1 + xN−3xN + xN−2xN = in≺ρ(f2).

Let I ′ = 〈xN−3xN−2, x
2
N−1 + xN−3xN + xN−2xN 〉 ⊃ in≺ρ(IE), where IE =

〈f1, f2〉 is the homogeneous ideal of E. The Hilbert polynomial of Proj (S/I ′)
is P (m) = 4m which is the same as the Hilbert polynomial m · degOE(2q +
2r) + 1− 1 of the flat limit. Since I ′ ⊃ in≺ρ(IE), we conclude that I ′ is equal
to in≺ρ(IE), the ideal defining the flat limit.

The curve E′ of arithmetic genus 1 defined by I ′ consists of two conics

(3.5)
C ′1 = {xN−3 = 0, x2

N−1 + xN−2xN = 0},
C ′2 = {xN−2 = 0, x2

N−1 + xN−3xN = 0}
meeting in a tacnode p′ = [0, . . . , 0, 1]. The flat limit of ρ(t).D is obviously D
itself since ρ acts trivially on D.

It remains to show that [C]m is strictly semistable with respect to ρ. Equiva-
lently, we may show that µ([C0]m, ρ) = 0. Let I0 denote the ideal of C0. Recall
that µ([C]m, ρ) = µ([C0]m, ρ), the right hand side of which we shall compute
by using the formula

−(N + 1)
P (m)∑

i=1

wtρ(xa(i)) + mP (m)
N∑

i=0

ri,
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where xa(1), . . . , xa(P (m)) are degree m monomials not in in≺(I0), and ri =
wtρ(xi).

First, we shall consider the second Hilbert point of C0. We need to sort out
the degree 2 monomials (of weight < 4) that are not in in≺(I ′). The following
are the degree 2 monomials with ρ-weight less than 4:

ρ-weight
3 xjxN−1, j ≤ N − 2
2 x2

N−1, xjxN , j ≤ N − 2
1 xN−1xN

0 x2
N

Among these, clearly xjxN and xjxN−1, j = 0, . . . , N − 4, are of weight < 4
and in in≺(I0) since they are in I0. Therefore, the only degree 2 monomials of
weight < 4 that are possibly not in in≺(I0) are

(3.6)

ρ-weight
3 xN−3xN−1, xN−2xN−1

2 xN−3xN , xN−2xN , x2
N−1

1 xN−1xN

0 x2
N

We claim that in the table (3.6), xN−3xN is the only monomial that is in
in≺(I0). Clearly, in≺(I0) ⊂ in≺(I ′). A Gröbner basis of I ′ is:

xN−3xN + xN−2xN + x2
N−1, xN−3xN−2, x2

N−2xN + xN−2x
2
N−1.

Hence the initial ideal is

(3.7) in≺(I ′) = 〈xN−3xN , xN−3xN−2, x
2
N−2xN 〉

and the only degree 2 monomials in in≺(I ′) are xN−3xN and xN−3xN−2. Hence
among the monomials in the list, xN−3xN is the only possible element in
in≺(I0).

Since f2 = x2
N−1 + (xN−3 + xN−2)xN ∈ I ′ vanishes entirely on D, f2 ∈ I0

and
in≺(f2) = xN−3xN ∈ in≺(I0).

On the other hand, if xN−3xN−2 = in≺(f) for some f ∈ I0, then f must be of
the form

axN−3xN−2 + bx2
N−2 + xN−1g1 + xNg2

for some a, b ∈ k and linear polynomials g1, g2. But this would imply that
xN−2 = 0 or axN−3 + bxN−2 = 0 entirely on D, which contradicts that D is
nondegenerate in {xN−1 = xN = 0}. Hence xN−3xN−2 6∈ in≺(I0). Therefore,
the total weight

∑P (2)
i=1 wtρx

a(i) is
∑P (2)

i=1 wtρ(xa(i)) = 2 + 2 · 3 + 2 + 1 + 4 · (7g − 7− 6)
= 11 + 28g − 52 = 28g − 41.
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On the other hand,

2 · P (2)
3g − 3

N∑

i=0

ri =
2 · 7(g − 1)
3(g − 1)

· (1 + 2(3g − 5))

= 28g − 42.

Hence
µ([C]2, ρ) = µ([C0]2, ρ)

= −(3g − 3) · (28g − 41− (28g − 42))
= −3(g − 1) < 0.

It follows that ρ destabilizes the 2nd Hilbert point of C.
Now let’s consider the 3rd Hilbert point of C. The degree 3 monomials of

ρ-weight less than 6 are

ρ-weight
5 xixjxN−1, i, j ≤ N − 2
4 xjx

2
N−1, xixjxN , i, j ≤ N − 2

3 x3
N−1, xixN−1xN , i ≤ N − 2

2 x2
N−1xN , xjx

2
N , j ≤ N − 2

1 xN−1x
2
N

0 x3
N

Among these monomials, xixjxN−1, xjx
2
N−1, xixjxN and xjx

2
N , are obviously

contained in in≺(I0) if i ≤ N − 4 or j ≤ N − 4 since they are in I0. Hence we
need to consider

(3.8)

ρ-weight
5 x2

N−3xN−1, xN−3xN−2xN−1, x2
N−2xN−1

4 x2
N−3xN , xN−3xN−2xN , x2

N−2xN , xN−3x
2
N−1, xN−2x

2
N−1

3 x3
N−1, xN−3xN−1xN , xN−2xN−1xN

2 x2
N−1xN , xN−3x

2
N , xN−2x

2
N

1 xN−1x
2
N

0 x3
N

First, note that xN−3xN−2xN−1 and xN−3xN−2xN are in in≺(I0) since they
are in I0. Then we argue similarly as in the 2nd Hilbert point case. By
examining the initial ideal (3.7), we deduce that among the monomials in (3.8),
the following monomials are the only possible elements in in≺(I0):

xN−3xN−2xN−1, x
2
N−3xN , xN−3xN−2xN , xN−3xN−2xN−1, xN−2x

2
N−1, xN−3x

2
N .

We have
g1 = xN−2 · (x2

N−1 + (xN−3 + xN−2)xN )− xN · (xN − 3xN−2)
= x2

N−2xN + xN−2x
2
N−1 ∈ I0.

Hence x2
N−2xN = in≺(g1) ∈ in≺(I0). Therefore, the total weight is

∑P (3)
i=1 wtρ(xa(i)) = 2 · 5 + 2 · 4 + 2 · 3 + 2 · 2 + 1 · 1 + 6 · (11(g − 1)− 10)

= 29 + 6(11g − 21) = 66g − 97.
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On the other hand,

3 · P (3)
3g − 3

N∑

i=0

ri =
3 · 11(g − 1)

3(g − 1)
· (1 + 2(3g − 5))

= 66g − 99.

Hence
µ([C]3, ρ) = µ([C0]3, ρ)

= −(3g − 3) · (66g − 97− (66g − 99))
= −6(g − 1) < 0.

It follows that ρ destabilizes the 3rd Hilbert point of C. From µ([C0]2, ρ) and
µ([C0]3, ρ), we obtain the filtered Hilbert function

PC0,ρ(m) = (m− 1)[−3(g − 1)(3−m)− 6(g − 1)(m/2− 1)]
= −3(g − 1)(m− 1).

This has negative values for all m ≥ 2, and it follows that [C]m is unstable
with respect to ρ for all m ≥ 2. ¤

Corollary 6. Let C0 and ρ be as in Proposition 5. Then µ(Ch(C0), ρ) = 0.
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