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FANO MANIFOLDS AND BLOW-UPS
OF LOW-DIMENSIONAL SUBVARIETIES

Elena Chierici and Gianluca Occhetta

Abstract. We study Fano manifolds of pseudoindex greater than one
and dimension greater than five, which are blow-ups of smooth varieties
along smooth centers of dimension equal to the pseudoindex of the man-
ifold. We obtain a classification of the possible cones of curves of these
manifolds, and we prove that there is only one such manifold without a
fiber type elementary contraction.

1. Introduction

A smooth complex projective variety X is called Fano if its anticanonical
bundle −KX is ample; the index rX of X is the largest natural number m such
that −KX = mH for some (ample) divisor H on X, while the pseudoindex iX
is the minimum anticanonical degree of rational curves on X.

By the Cone Theorem the cone NE(X) generated by the numerical classes
of irreducible curves on a Fano manifold X is polyhedral. By the Contraction
Theorem to each extremal ray of NE(X) is associated a contraction, i.e., a
proper morphism with connected fibers onto a normal variety.

A natural question which arises from the study of Fano manifolds is to
investigate - and possibly classify - Fano manifolds which admit an extremal
contraction with special features: for example, this has been done in many
cases in which the contraction is a projective bundle [1, 18, 21, 22, 23, 24], a
quadric bundle [29] or a scroll [5, 16].

Recently, Bonavero, Campana, and Wísniewski have considered the case
where an extremal contraction of X is the blow-up of a smooth variety along
a point, giving a complete classification [8]. The case where the center of
the blow-up is a curve has shown to be much more complicated. A complete
classification in case iX ≥ 2 has been obtained in [4], as a corollary of a more
general theorem, where the classification of Fano manifolds with a contraction
which is the blow-up of a manifold along a smooth subvariety of dimension
≤ iX − 1 is achieved. For Fano manifolds of pseudoindex iX = 1 which are
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blow-ups of smooth varieties along a smooth curve, some special cases have
been dealt with in the PhD thesis of Tsukioka [26] (partially published in [25]).

Considering the case when the dimension of the center of the blow-up is
iX ≥ 2, the lowest possible dimension of the manifold is five; the cones of
curves of such varieties are among those listed in [11], where the cone of curves
of Fano manifolds of dimension five and pseudoindex greater than one were
classified. Under the stronger assumption that rX ≥ 2 the complete list of
Fano fivefolds which are blow-ups of smooth varieties along smooth surfaces
has been given in [12].

In this paper we propose a generalization of both the results in [4] and in [12],
considering Fano manifolds of dimension greater than five with a contraction
which is the blow-up of a manifold along a smooth subvariety of dimension
iX ≥ 2.

We will first give a classification of the possible cones of curves of these
varieties:

Theorem 1.1. Let X be a Fano manifold of pseudoindex iX ≥ 2 and dimension
n ≥ 6, with a contraction σ : X → Y , associated to an extremal ray Rσ, which is
a smooth blow-up with center a smooth subvariety B of dimension dim B = iX .
Then the possible cones of curves of X are listed in the following table, where
F stands for a fiber type contraction and Dn−3 for the blow-up of a smooth
variety along a smooth subvariety of codimension three.

ρX iX R1 R2 R3 R4

2 Rσ F (a)
2 Rσ Dn−3 (b)
3 2,3 Rσ F F (c)
3 2 Rσ F Dn−3 (d)
4 2 Rσ F F F (e)

We will then prove that there is only one Fano manifold satisfying the as-
sumption of Theorem 1.1 whose cone of curves is as in case (b) - or, equivalently,
which does not admit a fiber type contraction:

Theorem 1.2. Let X be a Fano manifold of dimension n ≥ 6 and pseudoindex
iX ≥ 2, which is the blow-up of another Fano manifold Y along a smooth subva-
riety B of dimension iX ; assume that X does not admit a fiber type contraction.
Then Y ' G(1, 4) and B is a plane of bidegree (0, 1).

We notice that, in view of the classification given in Theorem 1.1, General-
ized Mukai Conjecture [9, 2] holds for the Fano manifolds we are considering.

Let us point out that the assumption iX ≥ 2 is essential for our methods,
as well as for the ones used in [4], [11] and [12], on which they are based.

The proofs of Theorems 1.1 and 1.2 are contained in Sections 5 and 6.
In Section 4 we consider manifolds which possess a quasi-unsplit dominating
family, proving that they are as in Theorem 1.1, cases (a) and (c)-(e).
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In Section 6 we consider manifolds which do not possess a family as above,
proving first that their cone of curves is as in case (b), and then that the only
such manifold is the blow-up of G(1, 4) along a plane of bidegree (0, 1).

2. Background material

2.1. Fano-Mori contractions

Let X be a smooth Fano variety of dimension n and let KX be its canon-
ical divisor. By Mori’s Cone Theorem the cone NE(X) of effective 1-cycles,
which is contained in the R-vector space N1(X) of 1-cycles modulo numerical
equivalence, is polyhedral; a face τ of NE(X) is called an extremal face and an
extremal face of dimension one is called an extremal ray.

To every extremal face τ one can associate a morphism ϕ : X → Z with
connected fibers onto a normal variety; the morphism ϕ contracts those curves
whose numerical classes lie in τ , and is usually called the Fano-Mori contraction
(or the extremal contraction) associated to the face τ .

An extremal ray R is called numerically effective, or of fiber type, if dim Z <
dim X, otherwise the ray is non nef or birational. We usually denote with
Exc(ϕ) := {x ∈ X | dim ϕ−1(ϕ(x)) > 0} the exceptional locus of ϕ; if ϕ is of
fiber type then of course Exc(ϕ) = X. If the exceptional locus of a birational
ray R has codimension one, the ray and the associated contraction are called
divisorial; if its codimension is bigger they are called small.

2.2. Families of rational curves

For this subsection our main reference is [15], with which our notation is
coherent; for missing proofs and details see also [2, 11].

Definition 2.1. We define a family of rational curves to be an irreducible
component V ⊂ Ratcurvesn(X) of the scheme Ratcurvesn(X) (see [15, Def-
inition 2.11]). Given a rational curve f : P1 → X we will call a family of
deformations of f any irreducible component V ⊂ Ratcurvesn(X) containing
the equivalence class of f .

We define Locus(V ) to be the image in X of the universal family over V via
the evaluation; we say that V is a dominating family if Locus(V ) = X.

Remark 2.2. If V is a dominating family of rational curves, then its general
member is a free rational curve. In particular, by [15, II.3.7], if B is a subset
of X of codimension ≥ 2, a general curve of V does not meet B.

Corollary 2.3. Let σ : X → Y be a smooth blow-up with center B of codi-
mension ≥ 2 and exceptional locus E, let V be a dominating family of rational
curves in Y and let V ∗ be a family of deformations of the strict transform of a
general curve of V . Then E · V ∗ = 0.

For every point x ∈ Locus(V ), we will denote by Vx the subscheme of V
parametrizing rational curves passing through x.
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Definition 2.4. Let V be a family of rational curves on X. We say that
• V is unsplit if it is proper;
• V is locally unsplit if every component of Vx is proper for the general

x ∈ Locus(V ).

Proposition 2.5 ([15, IV.2.6]). Let X be a smooth projective variety, V a
family of rational curves and x ∈ Locus(V ) a point such that every component
of Vx is proper. Then

(a) dim X −KX · V ≤ dimLocus(V ) + dim Locus(Vx) + 1;
(b) −KX · V ≤ dimLocus(Vx) + 1.

Remark 2.6. The assumptions on V in [15, IV.2.6] are slightly different, but
the same proof works for the statement above.

In case V is the unsplit family of deformations of an extremal rational curve
of minimal degree, Proposition 2.5 gives the fiber locus inequality:

Proposition 2.7 ([13, 28]). Let ϕ be a Fano-Mori contraction of X and E its
exceptional locus; let F be an irreducible component of a (non trivial) fiber of
ϕ. Then

dim E + dim F ≥ dim X + l − 1,

where l = min{−KX · C | C is a rational curve in F}. If ϕ is the contraction
of an extremal ray R, then l is called the length of the ray.

Definition 2.8. We define a Chow family of rational curves V to be an irre-
ducible component of Chow(X) parametrizing rational and connected 1-cycles.

If V is a family of rational curves, the closure of the image of V in Chow(X)
is called the Chow family associated to V . We will usually denote the Chow
family associated to a family with the calligraphic version of the same letter.

Definition 2.9. We denote by Locus(V1, . . . ,Vk)Y the set of points x ∈ X
such that there exist cycles C1, . . . , Ck with the following properties:

• Ci belongs to the family Vi;
• Ci ∩ Ci+1 6= ∅;
• C1 ∩ Y 6= ∅ and x ∈ Ck,

i.e., Locus(V1, . . . ,Vk)Y is the set of points that can be joined to Y by a
connected chain of k cycles belonging respectively to the families V1, . . . ,Vk.

We denote by ChLocusm(V1, . . . ,Vk)Y the set of points x ∈ X such that
there exist cycles C1, . . . , Cm with the following properties:

• Ci belongs to a family Vj ;
• Ci ∩ Ci+1 6= ∅;
• C1 ∩ Y 6= ∅ and x ∈ Cm,

i.e., ChLocusm(V1, . . . ,Vk)Y is the set of points that can be joined to Y by a
connected chain of at most m cycles belonging to the families V1, . . . ,Vk.
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Definition 2.10. Let V 1, . . . , V k be unsplit families on X. We will say that
V 1, . . . , V k are numerically independent if their numerical classes [V 1], . . . , [V k]
are linearly independent in the vector space N1(X). If moreover C ⊂ X is a
curve we will say that V 1, . . . , V k are numerically independent from C if the
class of C in N1(X) is not contained in the vector subspace generated by
[V 1], . . . , [V k].

Lemma 2.11 ([2, Lemma 5.4]). Let Y ⊂ X be a closed irreducible subset and
V an unsplit family of rational curves. Assume that curves contained in Y are
numerically independent from curves in V , and that Y ∩ Locus(V ) 6= ∅. Then
for a general y ∈ Y ∩ Locus(V )

(a) dimLocus(V )Y ≥ dim(Y ∩ Locus(V )) + dim Locus(Vy);
(b) dimLocus(V )Y ≥ dim Y −KX · V − 1.

Moreover, if V 1, . . . , V k are numerically independent unsplit families such that
curves contained in Y are numerically independent from curves in V 1, . . . , V k,
then either Locus(V 1, . . . , V k)Y = ∅ or

(c) dimLocus(V 1, . . . , V k)Y ≥ dimY +
∑

(−KX · V i)− k.

Definition 2.12. We define on X a relation of rational connectedness with
respect to V1, . . . ,Vk in the following way: x and y are in rc(V1, . . . ,Vk)-relation
if there exists a chain of rational curves in V1, . . . ,Vk which joins x and y, i.e.,
if y ∈ ChLocusm(V1, . . . ,Vk)x for some m.

To the rc(V1, . . . ,Vk)-relation it is possible to associate a fibration π :
X //___ Z, defined on an open subset (see [10], [15, IV.4.16]). If π is the
constant map we say that X is rc(V1, . . . ,Vk)-connected.

Definition 2.13. A minimal horizontal dominating family with respect to π
is a family V of horizontal rational curves such that Locus(V ) dominates Z0

and −KX · V is minimal among the families with this property.
If π is the identity map we say that V is a minimal dominating family for

X.

Definition 2.14. Let V be the Chow family associated to a family of rational
curves V . We say that V is quasi-unsplit if every component of any reducible
cycle of V is numerically proportional to the numerical class [V ] of a curve of
V .

We say that V is locally quasi-unsplit if, for a general x ∈ Locus(V) every
component of any reducible cycle of Vx is numerically proportional to V

Note that any family of deformations of a rational curve whose numerical
class lies in an extremal ray of NE(X) is quasi-unsplit.

Notation: Let S be a subset of X. We write N1(S) = 〈V 1, . . . , V k〉 if the nu-
merical class in N1(X) of every curve C ⊂ S can be written as [C] =

∑
i ai[Ci],

with ai ∈ Q and Ci ∈ V i. We write NE(S) = 〈V 1, . . . , V k〉 (or NE(S) =
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〈R1, . . . , Rk〉) if the numerical class in N1(X) of every curve C ⊂ S can be
written as [C] =

∑
i ai[Ci], with ai ∈ Q≥0 and Ci ∈ V i (or [Ci] in Ri).

Lemma 2.15 ([6, Lemma 1.4.5], [19, Lemma 1], [11, Corollary 2.23]). Let
Y ⊂ X be a closed subset and V a quasi-unsplit family of rational curves.
Then every curve contained in Locus(V )Y is numerically equivalent to a linear
combination with rational coefficients

aCY + bCV ,

where CY is a curve in Y, CV belongs to the family V and a ≥ 0.
Moreover, if Σ is an extremal face of NE(X), Y is a fiber of the associated

contraction and [V ] does not belong to Σ, then

NE(ChLocusm(V )Y ) = 〈Σ, [V ]〉 for every m ≥ 1.

Remark 2.16. In the quoted papers, the results are proved for unsplit families
of rational curves, but they are true - with the same proofs - for quasi-unsplit
ones.

3. Dominating families and Picard number

We collect in this section some technical results that we will need in the
proof.

The first is a variation of a classical construction of Mori theory, and says
that, given a family of rational curves V and a curve C contained in Locus(Vx)
for an x such that Vx is proper we have [C] ≡ a[V ].

The only new remark - which already followed from the old proofs, but, to
our best knowledge, was not stated - is the fact that a is a positive integer.

Lemma 3.1. Let X be a smooth variety, V a family of rational curves on
X, x ∈ Locus(V ) a point such that Vx is proper and C a curve contained in
Locus(Vx). Then C is numerically equivalent to an integral multiple of a curve
of V .

Proof. Consider the basic diagram:

(3.1.1) p−1(Vx) =: Ux
i //

p

²²

X

Vx

Let C be a curve contained in Locus(Vx); if C is a curve parametrized by V
we have nothing to prove, so we can suppose that this is not the case.

In particular we have that i−1(C) contains an irreducible curve C ′ which
is not contained in a fiber of p and dominates C via i; let S′ be the surface
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p−1(p(C ′)), let B′ be the curve p(C ′) ⊂ Vx and let ν : B → B′ be the normal-
ization of B′. By base change we obtain the following diagram:

SB

²²

ν̄ // Ux

p

²²

i // X

B ν
// Vx

Let now µ : S → SB be the normalization of SB ; by standard arguments (see
for instance [27, 1.14]) it can be shown that S is a ruled surface over the
curve B; let j : S → X be the composition of i, ν̄ and µ. Since every curve
parametrized by S passes through x there exists an irreducible curve Cx ⊂ S
which is contracted by j; by [15, II.5.3.2] we have C2

x < 0, hence Cx is the
minimal section of S.

Since every curve in S is algebraically equivalent to a linear combination
with integral coefficients of Cx and a fiber f , and since Cx is contracted by
j, every curve in j(S) is algebraically equivalent in X to an integral multiple
of j∗(f), which is a curve of the family V ; but algebraic equivalence implies
numerical equivalence and so the lemma is proved. ¤

Corollary 3.2. Let X be a smooth variety of dimension n and let V be a
locally unsplit dominating family such that −KX · V = n + 1. Then X ' Pn.

Proof. For a general point x ∈ X we know that Vx is proper and X = Locus(Vx)
by Proposition 2.5 (b). Therefore, by Lemma 3.1, for every curve C in X we
have −KX · C ≥ n + 1 and we can apply [14, Theorem 1.1]. ¤

Remark 3.3. The corollary also followed from the arguments in the proof of
[14, Theorem 1.1].

In the rest of the section we establish some bounds on the Picard number of
Fano manifolds with minimal dominating families of high anticanonical degree.

Lemma 3.4. Let X be a Fano manifold of dimension n ≥ 3 and pseudoindex
iX ≥ 2 with a minimal dominating family W such that −KX ·W > 2. If X
contains an effective divisor D such that NE(D) = 〈[W ]〉, then ρX = 1.

Proof. The effective divisor D has positive intersection number with at least
one of the extremal rays of X. Let R be such a ray, denote by ϕR the associated
contraction and by V R a family of deformations of a minimal rational curve in
R.

If the numerical class of W does not belong to R, then D cannot contain
curves whose numerical classes lie in R, therefore every fiber of ϕR is one-
dimensional.

By Proposition 2.7 this is possible only if l(R) ≤ 2 and therefore, since
l(R) ≥ iX , it must be l(R) = iX = 2.
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Since every fiber of ϕR is one-dimensional we have, for every x ∈ Locus(V R)
that dim Locus(V R

x ) = 1 and therefore, by Proposition 2.5 (a) V R is a domi-
nating family. But, recalling that

2 = −KX · V R < −KX ·W,

we contradict the assumption that W is minimal.
It follows that [W ] ∈ R, so the family W is quasi-unsplit and D · W > 0;

hence X can be written as X = Locus(W)D, and by Lemma 2.15 we have
ρX = 1. ¤

Corollary 3.5. Let X be a Fano manifold of dimension n ≥ 3 and pseudoindex
iX ≥ 2 which admits a minimal dominating family W such that −KX ·W ≥ n.
Then ρX = 1.

Proof. Let x ∈ X be a general point; every minimal dominating family is locally
unsplit, hence NE(Locus(Wx)) = 〈[W ]〉 by Lemma 2.15.

By Proposition 2.5 we have dim Locus(Wx) ≥ −KX ·W−1 ≥ n−1, so either
X = Locus(Wx) or Locus(Wx) is an effective divisor verifying the assumptions
of Lemma 3.4. In both cases we can conclude that ρX = 1. ¤

Lemma 3.6. Let X be a Fano manifold of dimension n ≥ 5 and pseudoindex
iX ≥ 2, with a minimal dominating family W such that −KX ·W = n− 1; let
U ⊂ X be the open subset of points x ∈ X such that Wx is unsplit. If a general
curve C of W is contained in U , then either a component of Locus(W )C is a
divisor and ρX = 1 or there exists an unsplit family V such that −KX · V = 2,
D := Locus(V ) is a divisor and D ·W > 0.

Proof. Let C be a general curve of W and consider Locus(W )C ; by Lemma 2.15
and Proposition 2.5 we have NE(Locus(W )C) = 〈[W ]〉 and dim Locus(W )C ≥
n− 2.

If X = Locus(W )C , then clearly ρX = 1, while if Locus(W )C has codimen-
sion one we conclude by Lemma 3.4.

Therefore we can assume that, for a general C in W , each component of
Locus(W )C has codimension two in X. The fibration π : X //___ Z associated
to the open prerelation defined by W is proper, since a general fiber F coincides
with Locus(Wx) for a general x ∈ F and Locus(Wx) is closed since W is locally
unsplit.

Being π proper there exists a minimal horizontal dominating family V with
respect to π; since the general fiber of π has dimension n− 2, then dim Z = 2,
hence for a general x ∈ Locus(V ) we have dimLocus(Vx) ≤ 2.

It follows that V is an unsplit family, which cannot be dominating by the
minimality of W , so dim Locus(Vx) ≥ iX ≥ 2, and D = Locus(V ) is a divisor
by Proposition 2.5. Since D dominates Z we have D ·W > 0. ¤
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4. Fano manifolds obtained blowing-up non Fano manifolds

We start now the proof of our results. Let us fix once and for all the setup
and the notation:

4.1. X is a Fano manifold of pseudoindex iX ≥ 2 and dimension n ≥ 6,
which has a contraction σ : X → Y which is the blow-up of a manifold Y along
a smooth subvariety B of dimension iX . We denote by Rσ the extremal ray
corresponding to σ, by lσ its length and by Eσ its exceptional locus.

Remark 4.2. The assumption on dim B is equivalent to

lσ + iX = n− 1.

In this section we will deal with Fano manifolds as in 4.1 which are obtained
as a blow-up σ : X → Y of a manifold Y which is not Fano. It turns out that
there is only one possibility (Corollary 4.4). We start with a slightly more
general result:

Theorem 4.3. Let X, Rσ and Eσ be as in 4.1 and assume that there exists
on X an unsplit family of rational curves V such that Eσ · V < 0. Then either
[V ] ∈ Rσ or X = PPn−3×P2(O(1, 1)⊕O(2, 2)).

Proof. Assume [V ] 6∈ Rσ. Since Eσ · V < 0 then Locus(V ) ⊆ Eσ, so V is not a
dominating family.

Pick x ∈ Locus(V ) and let Fσ be the fiber of σ through x; we have

dim Eσ ≥ dimLocus(Vx) + dim Fσ ≥ iX + lσ = n− 1,

so all the above inequalities are equalities; in particular we have dim Locus(Vx)=
iX and so, by Proposition 2.5,

dimLocus(V ) ≥ n + iX − 1− dimLocus(Vx) = n− 1,

hence Locus(V ) = Eσ; therefore the above (in)equalities are true for every
x ∈ Eσ.

Considering V as a family on the smooth variety Eσ we can write, again by
Proposition 2.5 (a)

n− 1 + iX = dim Locus(V ) + dim Locus(Vx) ≥ −KE · V + n− 2,

therefore −KEσ · V ≤ iX + 1; on the other hand

−KEσ · V = −KX · V − Eσ · V ≥ iX + 1,

forcing −KEσ · V = iX + 1 and Eσ · V = −1.
Then on Eσ we have two unsplit dominating families of rational curves

verifying the assumptions of [19, Theorem 1], hence E ' PiX×Plσ ; in particular
ρEσ = 2.

Now let R be an extremal ray of X such that Eσ · R > 0; by [18, Corol-
lary 2.15] the contraction ϕR associated to R is a P1-bundle; in particular, by
Proposition 2.7, this implies that iX = 2.
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Moreover, denoted by V R a family of deformation of a minimal rational
curve in R, we have X = Locus(V R)Eσ

, so ρX = 3 and the description of X is
obtained arguing as in the proof of Proposition 7.3 in [18]. ¤

Corollary 4.4. In the assumptions of Theorem 1.1 either Y is a Fano manifold
or X = PPn−3×P2(O(1, 1)⊕O(2, 2)), Y ' PP2(O⊕O(1)n−2) and B ' P2 is the
section corresponding to the surjection O ⊕O(1)n−2 → O.

Proof. If Y is not Fano, then there exists an extremal ray R′ ∈ NE(X) such
that Eσ ·R′ < 0. ¤

Remark 4.5. Note that if X ' PPn−3×P2(O(1, 1) ⊕ O(2, 2)), then NE(X) is
generated by three extremal rays: one – the P1-bundle contraction – is of fiber
type, while the other two are smooth blow-ups with the same exceptional locus.
In particular NE(X) is as in Theorem 1.1, case (d).

Corollary 4.6. Let X, Rσ and Eσ be as in 4.1. Assume that Y is a Fano
manifold and that there exists on X a family of rational curves V such that
Eσ · V < 0. Then −KX · V ≥ lσ; moreover, if V is unsplit, then [V ] ∈ Rσ.

Proof. Among the irreducible components of cycles in V there is at least one
whose family of deformations V Eσ is unsplit and such that Eσ · V Eσ < 0. By
Theorem 4.3 we have that [V Eσ ] ∈ Rσ, hence

−KX · V ≥ −KX · V Eσ ≥ lσ.

To prove the last assertion note that, if V is an unsplit family, we can apply
Theorem 4.3 directly to V . ¤

5. Manifolds with a dominating (quasi)-unsplit family

In this section we will describe the cone of curves of Fano manifolds as in
4.1 which admit a minimal dominating quasi-unsplit family of rational curves
W , and such that the target of the blow-up σ : X → Y is a Fano manifold.

If the family W is quasi-unsplit but not unsplit, then the result can be
obtained easily:

Lemma 5.1. Assume that W is not unsplit. Then ρX = 2, iX = 2 and
NE(X) = 〈Rσ, [W ]〉.
Proof. Since W is not unsplit we have −KX · W ≥ 2iX ; moreover, by the
minimality assumption we have that W is locally unsplit. Consider the asso-
ciated Chow family W and the rcW-fibration π : X //___ Z; since a general
fiber of π contains Locus(Wx) for some x, and by Proposition 2.5 we have
dimLocus(Wx) ≥ −KX ·W − 1 ≥ 2iX − 1 we have

dim Z ≤ n + 1− 2iX ≤ n− 1− iX = dim Fσ,

where Fσ is a fiber of σ.
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A family V σ of deformations of a minimal curve in Rσ is thereby horizontal
and dominating with respect to π; moreover, since Fσ dominates Z we have
that X = Locus(W)Fσ

, hence NE(X) = 〈Rσ, [W ]〉 by Lemma 2.15. ¤

In view of Lemma 5.1, we can assume throughout the section that W is an
unsplit dominating family.

Lemma 5.2. Let X be a Fano manifold with ρX = 3. Assume that there exists
an effective divisor E which is negative on one extremal ray R of NE(X) and is
nonnegative on the other extremal rays. If E ·C = 0 for a curve C ⊂ X whose
numerical class lies in ∂ NE(X), then [C] is contained in a two-dimensional
face of NE(X) which contains R.

Proof. The divisor E is not nef. Since E is effective, also −E is not nef, hence
the hyperplane {E = 0} has nonempty intersection with the interior of NE(X)
and the statement follows. ¤
Lemma 5.3. Assume that there exists an extremal ray Rτ such that [W ] 6∈ Rτ

and either Eσ · Rτ > 0 or Eσ ·W > 0. Then every fiber of the contraction τ
associated to Rτ has dimension not greater than two. In particular τ is either
a fiber type contraction or a smooth blow-up of a codimension three subvariety,
and in this case the exceptional locus of τ is Eτ = Locus(W,V τ )Fσ , for some
fiber Fσ of σ.

Proof. Let Fτ be a fiber of τ . If Eσ ·Rτ > 0, there exists a fiber Fσ of σ which
meets Fτ ; since W is dominating we have Fσ ⊂ Locus(W )Fσ and therefore
Fτ ∩ Locus(W )Fσ 6= ∅.

If else Eσ ·W > 0, then Eσ ∩Locus(W )Fτ 6= ∅, so there exists a fiber Fσ of σ
such that Fσ∩Locus(W )Fτ 6= ∅; equivalently, we have that Fτ ∩Locus(W )Fσ 6=
∅.

In both cases this intersection cannot be of positive dimension, since ev-
ery curve in Fτ has numerical class belonging to Rτ , while every curve in
Locus(W )Fσ has numerical class contained in the cone 〈Rσ, [W ]〉 by Lemma
2.15. By our assumptions

dim Locus(W )Fσ ≥ dim Fσ + iX − 1 = lσ + iX − 1 = n− 2,

hence dim Fτ ≤ 2. Proposition 2.7 implies that τ cannot be a small con-
traction; if it is divisorial, by the same inequality it is equidimensional with
two-dimensional fibers, so it is a smooth blow-up by [3, Theorem 5.1].

In this last case, denoted by V τ a family of deformations of a minimal curve
in Rτ , we have

dimLocus(W,V τ )Fσ ≥ n− 1,

hence Eτ = Locus(W,V τ )Fσ . ¤
Lemma 5.4. Assume that Eσ ·W = 0. Let π : X //___ Z be the rcW -fibration
and let V be a minimal horizontal dominating family with respect to π. Then
Rσ, W and V are numerically independent. In particular ρX ≥ 3.
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Proof. Since Eσ ·W = 0, Eσ does not dominate Z, hence Eσ cannot contain
Locus(V ) and therefore Eσ · V ≥ 0.

Let H be the pull-back to X of a very ample divisor in Pic(Z); H is zero
on curves in the family W and it is positive outside the indeterminacy locus
of π; in particular H · V > 0 since V is horizontal and H · Rσ > 0 since the
indeterminacy locus has codimension at least two in X.

If [V ] were contained in the plane spanned by Rσ and [W ] we could write
[V ] = α[V σ] + β[W ], but intersecting with Eσ we would get α ≤ 0, while
intersecting with H we would get α > 0, a contradiction which proves the
lemma. ¤

Proposition 5.5. Assume that Eσ ·W = 0. Let π be the rcW -fibration and
let V be a minimal horizontal dominating family with respect to π. Then V is
unsplit.

Proof. Assume first that Eσ · V > 0.
If V is not unsplit we will have, by Proposition 2.5 (a) for a general x ∈

Locus(V ), that
dimLocus(Vx) ≥ 2iX − 1 ≥ 3.

Since Eσ · V > 0, then Eσ ∩ Locus(Vx) 6= ∅, therefore Locus(Vx) meets a fiber
Fσ of σ. Moreover, since W is dominating, Fσ ⊂ Locus(W )Fσ and so the
intersection Locus(Vx) ∩ Locus(W )Fσ is not empty. By Lemma 2.11

dimLocus(W )Fσ ≥ lσ + iX − 1 = n− 2,

so Locus(W )Fσ contains a curve whose class is proportional to [V ], a contra-
diction by Lemma 5.4, since NE(Locus(W )Fσ ) = 〈[W ], Rσ〉.

We will now deal with the harder case Eσ ·V = 0, assuming by contradiction
that V is not unsplit.

We claim that Eσ has non zero intersection number with at least one compo-
nent of a cycle of the Chow family V. To prove the claim, consider the rc(W,V)-
fibration πW,V ; a general fiber of πW,V contains Locus(V,W )x for some x, so it
has dimension ≥ 3iX − 2.

Since Eσ is not contained in the indeterminacy locus of πW,V - which has
codimension at least two in X - it meets some fiber G of πW,V which, by
semicontinuity, has dimension ≥ 3iX − 2. Therefore there exists a fiber Fσ of
σ such that Fσ ∩G 6= ∅. and, for such a fiber, we have

dim(Fσ ∩G) ≥ lσ + 3iX − 2− n ≥ 2iX − 3 ≥ 1;

Let C be a curve in Fσ∩G; since C ⊂ Fσ we have Eσ ·C < 0; on the other hand,
since C ⊂ G the numerical class of C can be written as a linear combination of
[W ] and of classes of irreducible components of cycles in V by [2, Corollary 4.2].
Since Eσ ·W = 0 we see that Eσ cannot have zero intersection number with
all the components of cycles in V and the claim is proved.
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So in V there exists a reducible cycle Γ =
∑k

i=1 Γi such that Eσ · Γ1 < 0.
Then there exists an unsplit family T on which Eσ is negative and such that
[Γ1] = [T ] + [∆], with ∆ an effective rational 1-cycle.

Since Y is a Fano manifold, by Corollary 4.6 we have that [T ] ∈ Rσ and
−KX · T ≥ lσ; therefore, for a general x ∈ Locus(V ), by Proposition 2.5 (b)

dimLocus(Vx) ≥ −KX ·V −1 = −KX ·(T +∆+
k∑

i=2

Γi)−1 ≥ lσ +iX−1 = n−2.

If dim Locus(Vx) ≥ n − 1, then X = Locus(W )Locus(Vx) and ρX = 2 against
Lemma 5.4; therefore dimLocus(Vx) = −KX · V − 1 = n − 2, hence V is a
dominating family by Proposition 2.5, Γ = Γ1 + Γ2, ∆ = 0, [Γ1] ∈ Rσ and
−KX · Γ2 = iX .

Pick a general x ∈ Locus(V ) and let D := Locus(W )Locus(Vx). We have
dim D ≥ n−1 by Lemma 2.11; moreover, since N1(D) = 〈[W ], [V ]〉 and ρX ≥ 3
by Lemma 5.4, we cannot have D = X, hence D is an effective divisor.

We will now reach a contradiction by showing that D has zero intersection
number with every extremal ray of X.

Let V be any unsplit family whose numerical class is not contained in the
plane spanned by [W ] and [V ]; we cannot have dimLocus(V x) = 1, otherwise
V would be dominating of anticanonical degree 2, against the minimality of
V . This implies that D · V = 0 since N1(D) = 〈[W ], [V ]〉 implies that D ∩
Locus(V x) = ∅.

It follows that D · Γ2 = 0 and that D is trivial on every extremal ray not
lying in the plane 〈[V ], [W ]〉. Since [V ] = [Γ1] + [Γ2] and [Γ1] ∈ Rσ, which is
a ray not contained in the plane spanned by [W ] and [V ] we have that also
D · V = 0.

To conclude it is now enough to observe that we must have D · W = 0,
otherwise ChLocus2(W )Locus(Vx) = X, forcing again ρX = 2. We have thus
reached a contradiction, since the effective divisor D has to be trivial on the
whole NE(X). ¤

Proposition 5.6. Assume that Eσ is trivial on every unsplit dominating family
of rational curves of X. Then the cone of curves of X is generated by Rσ and
two other extremal rays; one of them is of fiber type and it is spanned by the
numerical class of W , the other is birational and the associated contraction is
a smooth blow-up of a codimension three subvariety.

Proof. Let π be the rcW -fibration, and let V be a minimal horizontal domi-
nating family with respect to π. By Proposition 5.5 we know that V is unsplit.

We claim that V is not a dominating family. Assume by contradiction that
Locus(V ) = X.

If Fσ is any fiber of σ we have, by Lemma 2.11,

dimLocus(V, W )Fσ ≥ dim Fσ + 2iX − 2 = lσ + 2iX − 2 ≥ n− 1.
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Notice that, by the assumptions on the intersection numbers, we have Locus(V ,
W )Fσ

⊆ Eσ, and therefore Locus(V, W )Fσ
= Eσ; in particular it follows from

the above inequalities that iX = 2.
We can repeat the same arguments to show that also Locus(W,V )Fσ =

Eσ; hence every curve contained in Eσ is numerically equivalent to a linear
combination

a[V σ] + b[V ] + c[W ]
with a, b, c ≥ 0 by Lemma 2.15, and therefore NE(Eσ) = 〈Rσ, [V ], [W ]〉. In
particular Eσ has nonpositive intersection with every curve it contains.

Let Rϑ be an extremal ray such that Eσ ·Rϑ > 0; by [18, Corollary 2.15] the
associated contraction ϑ : X → Y is a P1-bundle; the associated family V ϑ is
dominating and unsplit and Eσ ·V ϑ > 0, a contradiction. We have thus proved
that V is not dominating.

Consider the rc(W,V )-fibration π′ : X //___ Z ′; Z ′ has positive dimension
since by Lemma 5.4 we have ρX ≥ 3.

A general fiber F ′ of π′ contains Locus(V, W )x for some x ∈ Locus(V ), hence
dim F ′ ≥ 2iX − 1 and thus

dim Z ′ ≤ n + 1− 2iX ≤ lσ.

Let X0 be the open subset of X on which π′ is defined; since dim(X \X0) ≤
n − 2, a general fiber Fσ of σ is not contained in the indeterminacy locus of
π′. Moreover, curves in Fσ are not contracted by π′, since, by Lemma 5.4, [V ],
[W ] and Rσ are numerically independent. Hence π′|Fσ∩X0 : Fσ ∩X0 → Z ′ is a
finite morphism and we have dim Z ′ ≥ dim Fσ = lσ and the above inequalities
are equalities.

It follows that iX = 2, dim Z ′ = lσ and Fσ dominates Z ′; this implies that
X is rc(W,V, V σ)-connected (V σ is the family of deformations of a minimal
curve in Rσ). More precisely X = ChLocusm(W,V )Fσ for some m and so, by
Lemma 2.15, the numerical class of every curve in X can be written as

α[V σ] + β[W ] + γ[V ],

with α ≥ 0. This implies that the plane 〈[V ], [W ]〉 is extremal in NE(X).

By Corollary 4.6 we have that Eσ is nonnegative on the rays different from
Rσ, hence, by Lemma 5.2 [W ] is in an extremal face with Rσ. Since [W ] is
also in an extremal face with [V ] it follows that [W ] spans an extremal ray of
NE(X), whose associated contraction is of fiber type.

Let Rτ be the extremal ray of NE(X) which lies in the face contained in the
plane spanned by [V ] and [W ]. We have Eσ · Rτ > 0, otherwise Eσ would be
nonpositive on the whole cone. By Lemma 5.3 the associated contraction τ is
either of fiber type with fibers of dimension ≤ 2 or a smooth blow-up.

In the first case, the family of deformations V τ of a minimal curve in Rτ

would be a dominating family on which Eσ is positive. Moreover, since by
Proposition 2.7, taking into account that dimFτ ≤ 2 for every fiber of τ ,
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we have KX · V τ ≤ 3 < 2iX this family would also be unsplit, against our
assumptions.

It follows that τ a smooth blow-up of a codimension three subvariety.
We claim that Eτ · W > 0. If Locus(V ) ⊂ Eτ , then this follows from the

fact that V is horizontal dominating with respect to the contraction of the
ray spanned by [W ]. If Eτ · W = 0, then we will have Eτ · V < 0, hence
Locus(V ) ⊂ Eτ and the claim is proved.

It follows that V τ is horizontal dominating with respect to the contraction
of the ray spanned by [W ], so we can replace V by V τ in the first part of the
proof and get that X is rc(W,V τ , V σ)-connected.

Let τ : X → X ′ be the blow-down contraction; X ′ is then rationally con-
nected with respect to the images of curves in W and in V σ; since ρX′ = 2 the
images of curves in W are not numerically proportional to the images of curves
in V σ.

Let Fτ be a general fiber of τ , let A = τ(Locus(V σ)Fτ ) and B = τ(Locus(W )Fτ ).
Every curve in A is numerically proportional to the image of a curve of V σ and
every curve in B is numerically proportional to the image of a curve of W ,
hence dim(A ∩ B) = 0. Since Fτ is general and W is dominating we have
dim B = dim Locus(W )Fτ ≥ 2iX − 1 = 3, hence dim A ≤ n− 3 = lσ = dim Fσ.

This implies that every fiber of σ meeting Fτ is contained in Eτ , hence
that Eτ · Rσ = 0. Now we can show that NE(X) = 〈[W ], Rσ, Rτ 〉. Assume
by contradiction that there exists another extremal ray R; since Eτ · Rτ < 0,
Eτ ·W > 0 and Eτ · Rσ = 0 we have Eτ · R < 0, but, by Lemma 5.3, Eτ =
Locus(W,V τ )Fσ for some fiber Fσ of σ, hence, by Lemma 2.15, NE(Eτ ) =
〈[W ], Rσ, Rτ 〉. ¤

Theorem 5.7. Let X be a Fano manifold of pseudoindex iX ≥ 2 and dimension
n ≥ 6, with a contraction σ : X → Y which is the blow-up of a Fano manifold
Y along a smooth subvariety B of dimension iX . If X admits a dominating
unsplit family of rational curves W , then the possible cones of curves of X
are listed in the following table, where Rσ is the ray corresponding to σ, F
stands for a fiber type contraction and Dn−3 for a divisorial contraction whose
exceptional locus is mapped to a subvariety of codimension three.

ρX iX R1 R2 R3 R4

2 Rσ F
3 2,3 Rσ F F
3 2 Rσ F Dn−3

4 2 Rσ F F F

In particular Generalized Mukai Conjecture (see [9, 2]) holds for X.

Proof. Let V σ be a family of deformations of a minimal rational curve in Rσ.
By Proposition 5.6 we can assume that Eσ ·W > 0; therefore the family V σ

is horizontal and dominating with respect to the rcW -fibration π : X //___ Z.
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It follows that a general fiber F ′ of the the rc(W,V σ)-fibration π′ : X //___ Z ′

contains Locus(W )Fσ for some fiber Fσ of σ, and therefore, by Lemma 2.11,

dim F ′ ≥ dimLocus(W )Fσ ≥ lσ + iX − 1 = n− 2,

hence dimZ ′ ≤ 2.
If dim Z ′ = 0, then X is rc(W,V σ)-connected and ρX = 2; denote by Rϑ the

extremal ray of NE(X) different from Rσ. We claim that in this case [W ] ∈ Rϑ.
In fact, if this were not the case, Rϑ would be a small ray by [11, Lemma 2.4],
but in our assumptions we have E ·Rϑ > 0, against Lemma 5.3.

We can thus conclude that in this case NE(X) = 〈Rσ, Rϑ〉 and that Rϑ is
of fiber type.

If dim Z ′ > 0, take V ′ to be a minimal horizontal dominating family for π′;
by [2, Lemma 6.5] we have dim Locus(V ′

x) ≤ 2, and therefore, by Proposition 2.5
(a)

−KX · V ′ ≤ dimLocus(V ′
x) + 1 ≤ 3,

so V ′ is unsplit and iX ≤ 3.

Consider now the rc(W,V σ, V ′)-fibration π′′ : X //___ Z ′′: its fibers have
dimension ≥ n− 1 and so dimZ ′′ ≤ 1.

If dim Z ′′ = 0 we have that X is rc(W,V σ, V ′)-connected and ρX = 3; by
Lemma 5.3 every extremal ray of X has an associated contraction which is
either of fiber type or divisorial.

The classes [V σ] and [W ] lie on an extremal face Σ = 〈Rσ, R〉 of NE(X),
since, otherwise, by [11, Lemma 2.4], X would have a small contraction, against
Lemma 5.3. Let H be the pull back via π of a very ample divisor on Z.

We know that H · W = 0 and H · Rσ > 0, since V σ is horizontal and
dominating with respect to π. It follows that [W ] ∈ R (and so R is of fiber
type), since otherwise the exceptional locus of R would be contained in the
indeterminacy locus of π, and thus the associated contraction would be small,
contradicting again Lemma 5.3.

Assume that there exists an extremal ray R′ not belonging to Σ such that
its associated contraction is of fiber type. This ray must lie in a face of NE(X)
with R by [11, Lemma 5.4].

If E ·R′ > 0, we can exchange the role of R and R′ and repeat the previous
argument, therefore R′ lies in a face with Rσ and NE(X) = 〈Rσ, R, R′〉.

If E · R′ = 0, there cannot be any extremal ray in the half-space of NE(X)
determined by the plane 〈R′, Rσ〉 and not containing R, otherwise this ray
would have negative intersection with E, contradicting Theorem 4.3. So again
NE(X) = 〈Rσ, R, R′〉.

We can thus assume that every ray not belonging to Σ is divisorial. Let
R′ be such a ray, denote by E′ its exceptional locus, and by W ′ a family of
deformations of a minimal rational curve in R′.
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Recalling that, for a fiber F ′ of the rc(W,V σ)-fibration π′ we have dim F ′ ≥
n−2 we can write E′ = Locus(W ′)F ′ . By Lemma 2.15 it follows that NE(E′) =
〈Rσ, R,R′〉. In particular E′ cannot be trivial on Σ, otherwise it would be
nonpositive on the whole NE(X).

We claim that R and R′ lie on an extremal face of NE(X): if E′ ·R > 0 the
family W ′ is horizontal and dominating with respect to π and so R′ and R are
in a face by [11, Lemma 5.4]. If else E′ ·R = 0 we have E′ ·Rσ > 0. It follows
that, if R and R′ do not span an extremal face, there is an extremal ray R′′

(in the half-space determined by 〈R, R′〉 and not containing Rσ) on which the
divisor E′ is negative. The exceptional locus of R′′ must then be contained in
E′, contradicting the fact that NE(E′) = 〈Rσ, R, R′〉.

So we have proved that every ray not belonging to Σ lies in a face with R,
and this implies that such a ray is unique and NE(X) = 〈Rσ, R,R′〉.

Recalling that E′ = Locus(W ′)F ′ and that dim F ′ ≥ n − 2 we have that
every fiber of the contraction ϕ′ associated to R′ has dimension two; it follows
that iX = 2 and that ϕ′ is a smooth blow-up of a codimension three subvariety
by [3, Theorem 5.1].

Finally, if dim Z ′′ = 1 consider a minimal horizontal dominating family V ′′

for π′′: in this case ρX = 4, iX = 2 and both V ′ and V ′′ are dominating.
Let Fσ be a fiber of σ: then we can write X = Locus(V ′, V ′′)Locus(W )Fσ

. By
Lemma 2.15 every curve in X can be written with positive coefficients with
respect to V σ and W ; but W , V ′ and V ′′ play a symmetric role, so we can
conclude that NE(X) = 〈Rσ, [W ], [V ′], [V ′′]〉, and all the three rays different
from Rσ are of fiber type. ¤

6. Manifolds without a dominating quasi-unsplit family

In this section we will show that the only Fano manifold as in 4.1 which does
not admit a dominating quasi-unsplit family of rational curves is the blow-up of
G(1, 4) along a plane of bidegree (0, 1) (Theorem 6.7). In view of Theorem 5.7
this will conclude the proof of Theorem 1.1 and prove Theorem 1.2.

From now on we will thus work in the following setup:

6.1. X is a Fano manifold of pseudoindex iX ≥ 2 and dimension n ≥ 6, which
does not admit a quasi-unsplit dominating family of rational curves and has a
contraction σ : X → Y which is the blow-up of a manifold Y along a smooth
subvariety B of dimension iX . We denote by Rσ the extremal ray corresponding
to σ, by lσ its length and by Eσ its exceptional locus.

In view of Corollary 4.4 we can assume that Y is a Fano manifold. We
need some preliminary work to establish some properties of families of rational
curves on X and Y .

Lemma 6.2. Assume that ρX = 2. Let W ′ be a minimal dominating family
of rational curves for Y . Then −KY ·W ′ ≥ n− 1.
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Proof. Let W ∗ be a family of deformations of the strict transform of a general
curve of W ′. The family W ∗ is dominating and therefore, by 6.1, not quasi-
unsplit. Moreover, by Corollary 2.3, we have Eσ ·W ∗ = 0, hence there exists a
component Γ∗1 of a reducible cycle Γ∗ in W∗ such that Eσ · Γ∗1 < 0.

By Corollary 4.6 we have −KX · Γ∗1 ≥ lσ, and therefore

−KY ·W ′ = −KX ·W ∗ ≥ lσ + iX = n− 1. ¤

Proposition 6.3. Let X, Y , Rσ and Eσ be as in 6.1. Then there does not
exist on X any locally unsplit dominating family W such that Eσ ·W > 0.

Proof. Assume that such a family W exists; we will derive a contradiction
showing that in this case n = 5.

First of all we prove that iX = 2 and that X is rationally connected with
respect to the Chow family W associated to W and to V σ, the family of defor-
mations of a general curve of minimal degree in Rσ.

Since Eσ ·W > 0, for a general x ∈ X, the intersection Eσ ∩ Locus(Wx) is
nonempty. On the other hand, the fact that Eσ ·V σ < 0 yields that the families
W and V σ are numerically independent, and therefore, for every fiber Fσ of σ
and for a general x ∈ X, we have dim(Locus(Wx) ∩ Fσ) ≤ 0.

Now, if we denote by Fσ a fiber of σ which meets Locus(Wx), it follows that

2iX − 1 ≤ −KX ·W − 1 ≤ dimLocus(Wx) ≤ n− dim Fσ ≤ n− lσ = iX + 1,

whence iX = 2, dim Locus(Wx) = iX + 1 = 3 and −KX ·W = 2iX = 4.
In particular dim(Eσ∩Locus(Wx)) = 2 = dim B, hence σ(Eσ∩Locus(Wx)) =

B and every fiber of σ meets Locus(Wx).
Let x and y be two general points in X; every fiber of σ meets both

Locus(Wx) and Locus(Wy), so the points x and y can be connected using two
curves in W and a curve of V σ. This implies that X is rc(W, V σ)-connected.

Our next step consists in proving that ρX = 2, showing that the numerical
class of every irreducible component of any cycle of W lies in the plane Π
spanned in N1(X) by [W ] and Rσ.

Let x ∈ X be a general point; by Lemma 2.11 we have

dimLocus(V σ)Locus(Wx) ≥ lσ + 2iX − 2 ≥ n− 1,

therefore Eσ = Locus(V σ)Locus(Wx) and N1(Eσ) = Π by Lemma 2.15.
We have already proved that −KX · W = 4 and iX = 2; therefore every

reducible cycle of W has exactly two irreducible components, and the families
of deformations of these components are unsplit.

Let Γ1 + Γ2 be a reducible cycle of W; without loss of generality we can
assume that Eσ · Γ1 > 0. Denote by W 1 a family of deformations of Γ1; being
unsplit, the family W 1 cannot be dominating, hence for every x ∈ Locus(W 1)
we have dimLocus(W 1

x ) ≥ 2 by Proposition 2.5. Since Eσ ∩ Locus(W 1
x ) 6= ∅ it

follows that dim(Eσ ∩ Locus(W 1
x )) ≥ 1 for every x ∈ Locus(W 1), so [W 1] ∈ Π,

and consequently also [W 2] ∈ Π; it follows that ρX = 2.
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Let now TY be a minimal dominating family of rational curves for Y and
let T be the family of deformations of the strict transform of a general curve
of TY . By Lemma 6.2 we have −KX · T = −KY · TY ≥ n− 1.

By this last inequality, the intersection Locus(Wx)∩Locus(Tx) for a general
x ∈ X has positive dimension; since T is numerically independent from W
– recall that Eσ · T = 0 and Eσ · W > 0 – the family T cannot be locally
quasi-unsplit.

Therefore, in the associated Chow family T , there exists a reducible cycle
Λ = Λ1 + Λ2 such that a family of deformations T 1 of Λ1 is dominating and
numerically independent from T .

The family T 1, being dominating, cannot be unsplit, hence −KX · T 1 ≥ 4;
moreover, since T 1 is also numerically independent from T we have Eσ ·T 1 > 0.
It follows that Eσ · Λ2 < 0 and so −KX · Λ2 ≥ lσ by Lemma 4.6. Therefore

−KY · TY = −KX · T ≥ lσ + 2iX = n + 1

so Y ' Pn by Corollary 3.2.
The center B of σ cannot be a linear subspace of Y , since otherwise iX +lσ =

n + 1; take l to be a proper bisecant of B and let l̃ be its strict transform: we
have

2 = iX ≤ −KX · l̃ = n + 1− 2lσ = 4− lσ,

hence lσ = 2 and n = 5. ¤

Corollary 6.4. Let X, Y , Rσ and Eσ be as in 6.1. Then there does not exist
any family of rational curves V independent from Rσ such that Vx is unsplit
for some x ∈ E and such that E ⊆ Locus(V ).

Proof. Assume by contradiction that such a family exists.
First of all we prove that V cannot be unsplit. If this is the case, since on X

there are no unsplit dominating families it must be Locus(V ) = Locus(V ) = E.
Moreover, by Proposition 2.5 (a) we have dim Locus(Vx) ≥ −KX · V for every
x ∈ Locus(V ). We apply Lemma 2.11 (a) and Proposition 2.7 to get that
dimLocus(V )Fσ = n−1 for every fiber Fσ of σ. It follows that E = Locus(V )Fσ

and therefore NE(E) = 〈Rσ, [V ]〉 by Lemma 2.15.
Since V is a dominating unsplit family for the smooth variety E, by Propo-

sition 2.5 (b) we have −KE · V ≤ dimLocus(Vx) + 1, hence, by adjunction,
E ·V < 0; since V is numerically independent from Rσ it follows from Theorem
4.3 that Y is not a Fano manifold, a contradiction.

Since V is not unsplit we have −KX · V ≥ 2iX and therefore, by Proposi-
tion 2.5 (b), for a point x ∈ E such that Vx is unsplit, we have

dim Locus(Vx) ≥ −KX · V − 1 ≥ 2iX − 1.

On the other hand, since V is numerically independent from Rσ, we have, for
any fiber Fσ of σ, that dim Locus(Vx)∩Fσ ≤ 0, hence dim Locus(Vx) ≤ n−lσ =
iX + 1.
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It follows that iX = 2, −KX · V = 4 and dimLocus(Vx) = 3; the last two
equalities, by Proposition 2.5, imply that V is dominating.

Moreover, since −KX ·V = 4, the family V is also locally unsplit, otherwise
we would have a dominating family of lower degree, hence unsplit.

Since E ∩ Locus(Vx) is not empty and we cannot have Locus(Vx) ⊂ E –
recall that Vx is unsplit and V is independent from Rσ, so Locus(Vx) can
meet fibers of σ only in points – it follows that E · V > 0 and we can apply
Proposition 6.3. ¤

Remark 6.5. If CY ⊂ Y is a rational curve which meets the center B of the
blow-up in k points and is not contained in it, then −KY ·CY ≥ n−1+(k−1)lσ.

Proof. Let C be the strict transform of CY : then the statement follows from
the canonical bundle formula

−KX = −σ∗KY − lσE,

which yields

−KY · CY = −KX · C + lσE · C ≥ iX + klσ ≥ n− 1 + (k − 1)lσ. ¤

Corollary 6.6. Let WY be a minimal dominating family for Y and assume
that −KY ·WY = n − 1. Assume that there exists a reducible cycle Γ in WY

which meets B. Then Γ ⊂ B and NE(B) = 〈[WY ]〉.
Proof. Let Γi be a component of Γ: we know that −KY · Γi < n − 1, so the
whole cycle Γ has to be contained in B by Remark 6.5.

Let W i
Y be a family of deformations of Γi; the pointed locus Locus(W i

Y )b is
contained in B for every b ∈ B, again by Remark 6.5, hence

−KY ·W i
Y ≤ dimLocus(W i

Y )b ≤ dim B = iX ≤ iY ,

where the last inequality follows from [7, Theorem 1, (iii)].
Therefore W i

Y is unsplit and B = Locus(W i
Y )b, hence NE(B) = 〈[W i

Y ]〉
by Lemma 2.15. It follows that all the components Γi of Γ are numerically
proportional, and thus they are all numerically proportional to WY . ¤

We are now ready to prove the following:

Theorem 6.7. Let X be a Fano manifold of dimension n ≥ 6 and pseudoindex
iX ≥ 2, which is the blow-up of another Fano manifold Y along a smooth
subvariety B of dimension iX ; assume that X does not admit a quasi-unsplit
dominating family of rational curves. Then Y ' G(1, 4) and B is a plane of
bidegree (0, 1).

Proof. The proof is quite long and complicated; we will divide it into different
steps, in order to make our procedure clearer.

Step 1. A minimal dominating family of rational curves on Y has anti-
canonical degree n− 1.
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Let WY be a minimal dominating family of rational curves for Y , and let W
be the family of deformations of the strict transform of a general curve of WY .

Apply [4, Lemma 4.1] to W (note that in the proof of that lemma the
minimality of W is not needed). The first case in the lemma cannot occur by
Corollary 6.4, so there exists a reducible cycle Γ = Γσ +ΓV +∆ in W with [Γσ]
belonging to Rσ, ΓV belonging to a family V , independent from Rσ, such that
Vx is unsplit for some x ∈ Eσ, and ∆ an effective rational 1-cycle. In particular

(6.7.2) −KX ·W ≥ −KX · (Γσ + ΓV + ∆) ≥ lσ + iX = n− 1.

By the canonical bundle formula and Corollary 2.3 we have that

−KY ·WY = −KX ·W ≥ n− 1.

If −KY ·WY = n+1, then Y is a projective space by Corollary 3.2. The center
of σ cannot be a linear subspace, otherwise as in the proof of Proposition 6.3
we can show that lσ = 2 and n = 5, against the assumptions.

We can thus assume that −KY ·WY ≤ n.
Note that, by (6.7.2), the reducible cycle Γ has only two irreducible compo-

nents Γσ and ΓV ; moreover the class of Γσ is minimal in Rσ, hence Eσ ·Γσ = −1,
and −KX · V ≤ iX + 1. In particular V is an unsplit family.

Recalling that Eσ · W = 0 we get Eσ · ΓV = 1. Geometrically, a general
curve of V is the strict transform of a curve in WY which meets B in one point;
moreover, since a curve of WY not contained in B cannot meet B in more than
one point by Remark 6.5, we have that

(6.7.3) σ(Locus(V ) \ Eσ) = Locus(WY )B \B.

Assume that −KY ·WY = n; in this case ρY = 1 by Corollary 3.5.
For a general point y ∈ Y , we have that Locus(WY )y is an effective, hence

ample, divisor, so it meets B. In particular we have dim Locus(WY )B = n, and
by (6.7.3) this implies that V is dominating, against the assumptions since V
is unsplit. This completes Step 1.

Notice that −KY · WY = n − 1 implies that all inequalities in (6.7.2) are
equalities. In particular it follows that −KX · V = iX .

Step 2. The strict transforms of curves in a minimal dominating family of
rational curves on Y which meet B fill up a divisor on X.

Let x be a point in Eσ ∩ Locus(V ) and let Fσ be the fiber of σ containing
x; since dim Fσ + dimLocus(Vx) ≤ n we have

dim Locus(Vx) ≤ n− lσ = iX + 1.

By Proposition 2.5 (a) we have that dimLocus(V ) ≥ n−2; since V is an unsplit
family it cannot be dominating, so we need to show that dim Locus(V ) 6= n−2.

Assume by contradiction that dim Locus(V ) = n−2; in this case, by Propo-
sition 2.5 (b), for every x ∈ Locus(V ) we have dim Locus(Vx) = iX + 1, so for
every x ∈ X the intersection Locus(Vx) ∩ Eσ dominates B.
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Consider a point x ∈ Locus(V )\Eσ, denote by y its image σ(x) and consider
Locus(WY )y: since Locus(Vx) ∩ Eσ dominates B, we have B ⊂ Locus(WY )y.
But cycles inWY passing through y and meeting B are irreducible by Corollary
6.6, so B ⊆ Locus(WY )y and by Lemma 3.1 the numerical class of every curve
in B is proportional to [WY ]. This fact together with Corollary 6.6 allows us
to conclude that B does not meet any reducible cycle of WY .

We claim that a general curve C of WY is contained in the open subset
U of points y ∈ Y such that (WY )y is proper. If this were not true, then
Locus(WY )\U should have codimension one, and so there would exist a family
W 1

Y of deformations of an irreducible component of a cycle of WY whose locus
is a divisor; moreover this divisor should have positive intersection number with
WY .

This last condition would imply that Locus(W 1
Y ) has nonempty intersection

with B, since the numerical class of any curve in B is an integral multiple of
[WY ], but we have proved that B does not meet any reducible cycle of WY , so
we have reached a contradiction that proves the claim.

Therefore we can apply Lemma 3.6 and get that a component of Locus(WY )C

is a divisor, call it DC , such that DC ·WY > 0 and moreover ρY = 1, since in
the other case of the quoted lemma we would find a family of rational curves
of anticanonical degree two meeting B, against Remark 6.5.

Being ρY = 1 the effective divisor DC is ample, hence it meets B; therefore
for a general curve C in WY there exists another curve of WY which meets
both B and C; in other words, a general curve of WY meets Locus(WY )B , a
contradiction, since Locus(WY )B has codimension two in Y by (6.7.3).

Step 3. The Picard number of Y is one.

By (6.7.3) we have that dim Locus(WY )B = dim Locus(V ) = n − 1. This
implies that B contains curves whose numerical class is proportional to [WY ],
otherwise by Lemma 2.11 we would have dimLocus(WY )B = n.

If B does not meet any reducible cycle of WY we can argue as in the claim
in Step 2 and conclude that ρY = 1.

If else B meets a reducible cycle of WY , then, by Corollary 6.6, every curve
in B is numerically proportional to [WY ], hence NE(Locus(WY )B) = 〈[WY ]〉
and we conclude that ρY = 1 by Lemma 3.4.

Step 4. The numerical classes of the strict transforms of curves in a min-
imal dominating family of rational curves on Y which meet B are extremal in
NE(X).

Let D = Locus(V ); by Step 2 D is a divisor. Since Eσ · W = 0 and
Pic(X) = 〈Eσ, D〉 we have D ·W > 0.

Therefore Locus(W,V )x = Locus(V )Locus(Wx) is nonempty for a general x ∈
X, and so has dimension ≥ n− 2 + iX − 1 ≥ n− 1 by Lemma 2.11. It follows
that iX = 2 and D = Locus(W,V )x.
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The last equality, by Lemma 2.15, yields that every curve in D is numerically
equivalent to a linear combination a[W ] + b[V ] with a ≥ 0.

This implies that NE(D) is contained in the cone spanned by [V ] and by
an extremal ray R of NE(X). Since Eσ · W = 0 and Eσ · V > 0 it must be
Eσ ·R < 0, so R = Rσ and NE(D) ⊆ 〈Rσ, [V ]〉.

Let Rτ be the extremal ray of NE(X) different from Rσ and denote by τ
the associated contraction. The contraction τ is birational, since X does not
admit quasi-unsplit dominating families of rational curves, therefore its fibers
have dimension at least two by Proposition 2.7.

We claim that [V ] ∈ Rτ ; if we assume that this is not the case, then D ∩
Exc(τ) = ∅, since otherwise D will meet a fiber Fτ of τ , hence dim D∩Fτ ≥ 1,
contradicting NE(D) ⊆ 〈Rσ, [V ]〉.

It follows that D ·Rτ = 0, so D ·Rσ > 0 (and thus NE(D) = 〈Rσ, [V ]〉, since
fibers of σ have dimension lσ = n− 1− iX = n− 3 ≥ 3, hence dim(D∩Fσ) > 0
for every fiber Fσ of σ).

Notice also that the effective divisor Eσ must be positive on Rτ .
Let Fσ and Fτ be two meeting fibers of the contractions σ and τ respectively;

we have dim(Fσ ∩ Fτ ) = 0, hence

n ≥ dimFσ + dim Fτ ≥ lσ + lτ .

Therefore, recalling that iX = 2 and thus lσ = n − 3, we have lτ ≤ 3, so
dimExc(τ) ≥ n− 2 by Proposition 2.7.

In particular, if Fσ is a fiber of σ meeting Exc(τ) we have

dim(Fσ ∩ Exc(τ)) ≥ lσ − 2 ≥ 1.

Let C be a curve in Fσ ∩ Exc(τ); since D · Rσ > 0 we have D ∩ C 6= ∅, hence
D ∩ Exc(τ) 6= ∅, a contradiction that proves the extremality of [V ].

Step 5. The contraction of X different from σ is the blow-up of Pn along a
smooth subvariety of codimension three.

Since [V ] ∈ Rτ we have D = Locus(V ) ⊂ Exc(τ); being τ birational it
follows that D = Exc(τ) and τ is divisorial; we will denote from now on the
exceptional divisor by Eτ .

Since Eτ = Locus(W,V )x for a general x ∈ X every fiber of τ meets
Locus(Wx), so from dim(Fτ ∩ Locus(Wx)) = 0 we derive

dim Fτ ≤ n− dim Locus(Wx) ≤ 2.

On the other hand, by Proposition 2.7, we have dim Fτ ≥ 2 for every fiber
of τ , hence τ |Eτ is equidimensional; we can apply [3, Theorem 5.1] to get that
τ : X → Z is a smooth blow-up.

Let TZ be a minimal dominating family of rational curves for Z and T ∗ a
family of deformations of the strict transform of a general curve of TZ .

Among the families of deformations of the irreducible components of cycles
in T ∗ there is at least one family which is dominating and locally unsplit; call
it T .
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By Proposition 6.3 we have Eσ · T = 0, therefore T is numerically propor-
tional to W ; If −KX · T < −KX ·W , then the images in Y of the curves in T
would be a dominating family for Y of degree smaller than the degree of WY ,
a contradiction, hence −KX · T ≥ −KX ·W = n− 1.

Notice also that, since Eτ · T ∗ = 0 and Pic(X) is generated by Eσ and Eτ

we cannot have T = T ∗. In particular −KX · T ∗ ≥ −KX · T + iX . It follows
that

−KZ · TZ = −KX · T ∗ ≥ −KX · T + iX ≥ n + 1,

so Z ' Pn by Corollary 3.2 and TZ is the family of lines in Z.

Step 6. Conclusion.

Take lσ − 2 general sections Hi ∈ |τ∗OPn(1)|; their intersection I is a
Fano manifold of dimension five with two blow-up contractions of length two
σ|I : I → Y ′ and τ|I : I → P5.

By the classification in [11] two cases are possible: either the center of τ|I is
a Veronese surface or it is a cubic scroll contained in a hyperplane. The first
case can be excluded observing that, in our case, the degree of Eσ on a minimal
curve in Rτ is one, since Eσ ·W = 0 and Eσ ·Rσ = −1.

It follows that Y ′ is a del Pezzo manifold of degree five, i.e., a linear section
of G(1, 4); Y has Y ′ as an ample section, and therefore Y is G(1, 4) by [17,
Proposition A.1]. The center of σ|I : I → Y ′ is a plane of bidegree (0, 1) by
[20, Theorem XLI]. ¤
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