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ABSOLUTELY STABLE EXPLICIT SCHEMES FOR
REACTION SYSTEMS

Chang-Ock Lee, Chae Hun Leem, Eun-Hee Park, and Jae Boum Youm

Abstract. We introduce two numerical schemes for solving a system of
ordinary differential equations which characterizes several kinds of linear
reactions and diffusion from biochemistry, physiology, etc. The methods
consist of sequential applications of the simple exact solver for a reversible
reaction. We prove absolute stability and convergence of the proposed
explicit methods. One is of first order and the other is of second order.
Numerical results are included.

1. Introduction

Many phenomena of interest in physiology and biochemistry are charac-
terized by reactions among several chemical species and diffusion in various
mediums (see [6–8, 10]). In a closed system, both reactions and diffusion are
governed by a system of ordinary differential equations (ODEs)

ẏ(t) = My(t),(1.1)

which guarantees conservation of the total amount of y(t) for any t ≥ 0. Since
we are concerned with the steady-state solution as well as the transient in
simulations of very large systems of chemical reactions or molecular dynam-
ics, we need to take the overall computational cost into consideration. Many
physiologists and biochemists prefer explicit methods to implicit methods since
implementation of the explicit methods is easier than the others. The popu-
lar methods for reaction systems are simple explicit schemes such as Euler’s
method, Runge-Kutta method, etc. However, it is well-known that conditional
stability, the typical weak point of explicit methods, is very fatal for stiff prob-
lems. In the past few decades, many studies on numerical methods for stiff
ODEs have been done in various aspects (see [1, 2, 4, 5, 11]).

The aim of this paper is to present two absolutely stable explicit schemes
which are applicable to a linear reaction system (1.1). In 1978, Rush and
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Larsen [9] introduced an iterative procedure for the Hodgkin-Huxley model for
cell membrane behavior, which is composed of a circuit equation for currents
and a coupled system of nonlinear ODEs for the ionic gates. An integration
algorithm was suggested for a numerical solution to the ODEs for the ionic
gates, which was based on the exact solution of a linearized ionic gate equation.
Similarly, the methods in this paper are motivated by the simple exact solver
for a reversible reaction. In spite of their explicitness, we have unconditional
stability, that is, stability without any condition on the step size. Furthermore,
we prove the convergence of the proposed methods; one is of first order and
the other is of second order.

This paper is organized as follows. In Section 2, we introduce the reaction
systems of our interest and propose two numerical methods for a linear reaction
system. Section 3 provides theoretical results for convergence and stability of
the proposed methods. In Section 4, we provide numerical experiments for
typical reaction systems.

2. Reaction systems and numerical methods

We consider two typical types of reactions: reversible reactions and circular
reactions. A reaction of the type

A
kf®
kb

B

is called the reversible reaction, where kf and kb are the rate constants for the
forward and backward reactions. One interesting biochemical system to which
the reversible first order equations apply is the carbonic acid system:

CO2 + H2O
k1

k−1

H2CO3
Ka→
very

fast

H+ + HCO−3(2.1)

Equation (2.1) reduces to

CO2

kf®
kb

HCO−3

(see [8]). Then, the rate equations are written down as

dA

dt
= −kbA + kfB

dB

dt
= kbA− kfB,

(2.2)

where A(t) and B(t) are the concentrations of CO2 and HCO−3 as functions
of time t. Another interesting example of such a type occurs frequently in
metabolic studies. The other type is a circular reaction shown in Figure 1. We
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Figure 1. A circular reaction system with 3 substances A0, A1 and A2

may write the differential equations describing this process as

d

dt




A0(t)
A1(t)
A2(t)


 =



−b10 − b20 f10 f20

b10 −f10 − b21 f21

b20 b21 −f21 − f20







A0(t)
A1(t)
A2(t)


 .(2.3)

From the fact that the total concentration A(t) + B(t) remains constant for
all t ≥ 0 in a closed system, the exact solution of (2.2) is written in a form

[
A(t)
B(t)

]
=

[
1

kf+kb
(kf + kbe

−(kf+kb)t) kf

kf+kb
(1− e−(kf+kb)t)

kb

kf +kb
(1− e−(kf+kb)t) 1

kf+kb
(kb + kfe−(kf+kb)t)

] [
A(0)
B(0)

]

= exp
(

t

[−kb kf

kb −kf

])[
A(0)
B(0)

]
.

Similarly, we can find the exact solution for the circular reaction in Figure 1.
In general, a reaction system is characterized by a coupled system of ODEs.
To solve a relevant eigenvalue problem is the first step in solving such a cou-
pled system exactly (see [12]). But as the number of substances increases, the
exact solver suffers from typical difficulties in large scale eigenvalue problems.
There are some numerical techniques in common use: the Euler method, which
is the simplest one, but requires a small size of time step ∆t; the Runge-Kutta
method, which is more complicated, but allows much bigger time steps to be
taken. Now for the circular reaction case, we propose new numerical methods
motivated by the above process that is used to find the exact solution to a re-
versible reaction. For the sake of simplicity, we illustrate these algorithms for a
simple circular reaction (2.3) although they are applicable to more complicated
reaction systems.

Algorithm 1: CR2

(1) For each k ∈ N, let Ai,k be the approximate solution to Ai(t) at time
tk = k∆t.

(2) For k = 0, 1, 2, . . . do:
(a) Set Aic

0 = A0,k, Aic
1 = A1,k and Aic

2 = A2,k.
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(b) Find the exact solution Atemp
0 (t) and Atemp

1 (t) of the reversible
reaction with the initial values Aic

0 and Aic
1 :

A0

f10®
b10

A1

Set Aic
0 = Atemp

0 (tk+1) and Aic
1 = Atemp

1 (tk+1).
(c) Find the exact solution Atemp

0 (t) and Atemp
2 (t) of the reversible

reaction with the initial values Aic
0 and Aic

2 :

A0

f20®
b20

A2

Set A0,k+1 = Atemp
0 (tk+1) and Aic

2 = Atemp
2 (tk+1).

(d) Find the exact solution Atemp
1 (t) and Atemp

2 (t) of the reversible
reaction with the initial values Aic

1 and Aic
2 :

A1

f21®
b21

A2

Set A1,k+1 = Atemp
1 (tk+1) and A2,k+1 = Atemp

2 (tk+1).

Remark 2.1. CR2 stands for Consecutive Reversible Reactions.

The key idea of Algorithm 1 is that we approximately regard a circular
reaction as a consecutive reaction which consists of three separated reversible
reactions. Although we solve three reversible reactions in the following order

A0 ® A1, A0 ® A2, A1 ® A2,

the algorithm does not depend upon the ordering we adopt to split a circular
reaction into a chain of reversible reactions. In a form of matrix exponential,
Algorithm 1 is represented by the following linear system:




A0,k+1

A1,k+1

A2,k+1


 = exp

(
∆tM21

)
exp

(
∆tM20

)
exp

(
∆tM10

)



A0,k

A1,k

A1,k




def= L2




A0,k

A1,k

A2,k


 ,

where M ij is a 3 by 3 matrix relevant to the reversible reaction between Aj

and Ai such that

(2.4) (M ij)lm =





−bij if (l,m) = (j, j),
fij if (l,m) = (j, i),
bij if (l,m) = (i, j),
−fij if (l,m) = (i, i),
0 otherwise.
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We interpret the Algorithm 1 for n substances inductively, i.e., at t = tk, we
assume that the reaction system with j substances A0, A1, . . . , Aj−1(1 ≤ j ≤
n− 1) is solved, then we solve the parallel reaction that consists of j reversible
reactions:

Aj

fj0
bj0

A0

Aj

fj1
bj1

A1

...

Aj

fj(j−1)


bj(j−1)

Aj−1

Algorithm 2: SCR2

(1) For each k ∈ N, let As
i,k be the approximate solution to Ai(t) at time

tk = k∆t.
(2) For k = 0, 1, 2, . . . do:

(a) Set Aic
0 = A0,k, Aic

1 = A1,k and Aic
2 = A2,k.

(b) As in Algorithm 1, solve three reversible reactions according to
chosen ordering: A0 ® A1, A0 ® A2, A1 ® A2. Define As1

i,k+1 by
the obtained approximation Ai,k+1 for i = 1, 2, 3.

(c) Solve three reversible reactions in reverse order: A2 ® A1, A2 ®
A0, A1 ® A0. Define As2

i,k+1 by the obtained approximation Ai,k+1

for i = 1, 2, 3.
(d) Set

As
i,k+1 =

As1
i,k+1 + As2

i,k+1

2
for i = 1, 2, 3.

Remark 2.2. For reaction systems with more than three substances, there are
two different ways to implement the reverse ordering in the step (2)-(c) of the
Algorithm 2; one is to reverse the order of reversible reactions in the step (2)-(b)
and the other is to put the substances used in the step (2)-(b) in reverse order.
In other words, we suppose that in a reaction system with four substances, we
solve the six reversible reactions in the following order

A0 ® A1, A0 ® A2, A1 ® A2, A0 ® A3, A1 ® A3, A2 ® A3.

Then, at our convenience we adopt one of two reverse ordering

A2 ® A3, A1 ® A3, A0 ® A3, A1 ® A2, A0 ® A2, A0 ® A1(2.5)

and

A3 ® A2, A3 ® A1, A2 ® A1, A3 ® A0, A2 ® A0, A1 ® A0.(2.6)
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Remark 2.3. Algorithm 2 is a symmetrized version of Algorithm 1 and can be
applied to n substances inductively as in the Algorithm 1.

3. Stability and convergence results

Now, we consider a linear reaction system with (n + 1) substances:

d

dt




A0(t)
A1(t)

...
An(t)


 = Mn




A0(t)
A1(t)

...
An(t)


 ,(3.1)

where the matrix Mn with entries {mij}n+1
i,j=1 satisfies

mii < 0 ∀i, mij ≥ 0 ∀i 6= j,

n+1∑

i=1

mij = 0 ∀j.

Remark 3.1. The assumption
∑

i mij = 0 enforces the concerned reaction sys-
tem to be conserved. In fact, the requirement of the conserved system can be
dropped since the non-conserved system can be converted into the conserved
one by adding an artificial substance. In Section 4, we state in more details
how to extend the proposed algorithm to the non-conserved systems.

Focusing on the individual reversible reactions between two substances yields
a detailed form of Mn as follows:

Mn =




−∑n
i=1 bi0 f10 · · · f(n−1)0 fn0

b10 −f10 −
∑n

i=2 bi1 · · · f(n−1)1 fn1

...
...

. . .
...

...
b(n−1)0 b(n−1)1 · · · −∑n−2

j=0 f(n−1)j − bn(n−1) fn(n−1)

bn0 bn1 · · · bn(n−1) −∑n−1
j=0 fnj




.

Note that the linear reaction system (3.1) includes a chain of reversible reac-
tions and circular reactions. We can easily confirm that the real parts of all
eigenvalues of Mn are nonpositive. Hence the solution for the problem (3.1) is
bounded for any t > 0.

Definition. A numerical method for the problem like (3.1) is said to be stable
if it does not blow up as t → ∞. Furthermore, a numerical method is called
absolutely stable if it is stable without any condition on the step size ∆t.

3.1. Stability and convergence of CR2 for linear reaction systems

When applying the CR2 algorithm to (3.1), we get the approximate solution
(Ai,k+1)n

i=0 such that



A0,k+1

A1,k+1

...
An,k+1


 = Ln




A0,k

A1,k

...
An,k


 ,(3.2)
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where

(3.3) Ln =
(
e∆tMn(n−1) · · · e∆tMn0

)
· · ·

(
e∆tM21e∆tM20

)
e∆tM10

and M ij is an (n + 1)× (n + 1) matrix with entries in (2.4). The expression of
the form

(3.4)
n∏

i,j=0
i>j

exp
(
∆tM ij

)

formally implies Ln in (3.3).
Let ‖x‖1 =

∑n
i=1 |xi| be a norm on Rn.

Theorem 3.2. The algorithm CR2 applied to linear reaction systems is abso-
lutely stable.

Proof. The CR2 algorithm gives an approximate solution to (3.1) such that
yk+1 = Lnyk with yk = (A0,k · · ·An,k)T . Note that each matrix operator
exp

(
∆tM ij

)
in (3.3) conserves the total concentration of reaction substances

since the action of exp
(
∆tM ij

)
is characterized by a reversible reaction be-

tween two substances in a closed system. Hence, it follows that

(3.5) ‖yk+1‖1 = ‖yk‖1,
that is, the approximation does not blow up independently of ∆t. ¤

Remark 3.3. We shall compare the stability of CR2 with that of typical nu-
merical ODE solvers in more details. In order to analyze numerical methods
for ODEs, a simple scalar ODE

(3.6) y′(t) = λy(t)

is commonly-used since it is very helpful in predicting the stability behavior of
numerical schemes. In such a typical stability analysis with (3.6), two stability
properties, A-stability and L-stability are used especially for the stiff problems
[3]. The stability function R(z) is a major tool to measure the stability behavior
of numerical solutions. But, since our algorithm is first aimed for a numerical
solution to a reaction system not a scalar ODE, it is not easy to adopt directly
the analysis techniques based on the stability function. Note that the A-stability
and L-stability properties were originally introduced as criteria which show how
well numerical solutions mimic important properties of the exact solution in
form of exponential function. In this context, the algorithm CR2 might be
regarded as an A-stable method in the sense that the numerical solution by CR2

is bounded independently of both the step size ∆t and the spectrum of Mn.
In addition, the L-stability is essential to a numerical method for stiff ODEs,
which makes stiff components of a numerical solution damped out rapidly. A
numerical method is said to be L-stable if limz→∞ |R(z)| = 0. Focusing on
the main role of L-stability, it is sufficient to verify how well the proposed
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CR2 maintains the rapidly decaying property of the exact solution to the stiff
problems. In a reaction system (3.1), the stiffness ratio of the problem is in
connection with difference in magnitude of reaction parameters. Assuming
that the only one specific pair Ajs ® Ais of reversible reaction reacts very
fast relative to the other parts of reactions in (3.1), that is, the problem is
stiff, the exact solution includes such a rapidly decaying component. Based on
the structure of the CR2 in (3.3), the operator exp(∆tM isjs) corresponding to
the reversible reaction between Ajs and Ais makes the approximation by CR2

preserve well the stiff component of the exact solution.

Let ‖A‖1 = max1≤j≤n

∑n
i=1 |aij | be a matrix norm on Rn×n.

Theorem 3.4. The algorithm CR2 applied to (3.1) has the order of conver-
gence 1.

Proof. We denote the exact solution of (3.1) by y(t) = (A0(t) · · ·An(t))T .
The CR2 gives an approximation to (3.1) such that yk+1 = Lnyk with yk =
(A0,k · · ·An,k)T . We will show that

‖y(tk+1)− yk+1‖1 ≤ C∆t,

where C is a constant independent of ∆t. Using Taylor’s theorem yields

(3.7) y(tk+1) =
(

I + ∆tMn +
(∆t)2

2
M2

n

)
y(tk) + O((∆t)3).

Recalling the definition of the matrix exponential in terms of power series, Ln

is rewritten as

Ln =
n∏

i,j=0
i>j

(
I + ∆tM ij + O((∆t)2)

)

= I + ∆tMn + (∆t)2Ln,2 + O((∆t)3),

where
∏

is formally used the same as in (3.4) and the second equality is given
by the fact that

Mn =
n∑

i,j=0
i>j

M ij .

Hence, it follows that

(3.8) yk+1 = (I + ∆tMn + (∆t)2Ln,2)yk + O((∆t)3).

Let ek = y(tk) − yk denote the numerical error. Subtracting (3.8) from (3.7)
gives

ek+1 = (I + ∆tMn + (∆t)2Ln,2)ek +
(

M2
n

2
− Ln,2

)
(∆t)2y(tk) + O((∆t)3)

= Lnek + O((∆t)2).
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Since ‖Ln‖1 = 1 by (3.5), it follows that

‖ek+1‖1 ≤ ‖ek‖1 + C(∆t)2

with a constant C independent of ∆t and k. We can check by induction on k
that

‖ek‖1 ≤ kC(∆t)2 ∀k = 0, 1, . . . .

If we restrict t to the finite interval [0, tF ], then we have that

‖ek‖1 ≤ btF /∆tcC(∆t)2

≤ CtF ∆t, ∀k = 0, 1, . . . , btF /∆tc.
Since C is independent of ∆t, it follows that

lim
∆t→0

0≤k≤btF /∆tc

‖ek‖1 = 0.

In other words, the algorithm CR2 is convergent and has the order of conver-
gence 1. ¤
3.2. Convergence of SCR2 for linear reaction systems

Applying the SCR2 to (3.1) gives



As1
0,k+1

As1
1,k+1
...

As1
n,k+1


 = Ls1

n




As
0,k

As
1,k
...

As
n,k


 ,




As2
0,k+1

As2
1,k+1
...

As2
n,k+1


 = Ls2

n




As
0,k

As
1,k
...

As
n,k


 .

Then, we have



As
0,k+1

As
1,k+1
...

As
n,k+1


 = Ls

n




As
0,k

As
1,k
...

As
n,k


 =

1
2
(Ls1

n + Ls2
n )




As
0,k

As
1,k
...

As
n,k


 .(3.9)

As mentioned in Remark 2.2, for reaction systems with more than three sub-
stances, there are two possible ways to choose the reverse order used in im-
plementing SCR2. Note that how to reverse the order of reactions makes a
difference in the relationship between Ls1

n and Ls2
n . Hence, we shall analyze the

algorithm SCR2 in two different ways.
First, let us handle the algorithm with the reverse order (2.5).

Lemma 3.5. If the algorithm SCR2 is in company with the reverse order (2.5),
the matrix Ls

n in (3.9) has the Taylor expansion

Ls
n = Ls

n,0 + Ls
n,1∆t + Ls

n,2(∆t)2 + O((∆t)3)

= I + Mn∆t +
1
2
M2

n(∆t)2 + O((∆t)3),

where Mn is the matrix in (3.1).
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Proof. Since SCR2 is a symmetrized version of CR2, each Lsi
n has the same

property as Ln in CR2. Thus, it is obvious that

Ls
n,0 = I, Ls

n,1 = Mn.

For a linear reaction system with (n + 1) substances, recall

Ls1
n =

(
e∆tMn(n−1) · · · e∆tMn0

)
· · ·

(
e∆tM21e∆tM20

)
e∆tM10 .

According to the reverse order in (2.5), we have

Ls2
n = e∆tM10

(
e∆tM20e∆tM21

)
· · ·

(
e∆tMn0 · · · e∆tMn(n−1)

)
.

Based on the fact that

Mn =
n∑

i,j=0
i>j

M ij ,

the power series expansion of each Lsi
n yields

Ls
n,2 =

1
2
M2

n. ¤
Next, we consider the SCR2 equipped with the reverse order (2.6), where

the reaction substances are put in reverse order. In order to look into the
procedure of the SCR2 algorithm applied to a reaction system (3.1), we first
consider a circular reaction with 3 substances shown in Figure 1. Two parallel
solution steps in SCR2 applied to the reaction system is represented as




As1
0,k+1

As1
1,k+1

As1
2,k+1


 = Ls1

2




As
0,k

As
1,k

As
2,k


 ,




As2
2,k+1

As2
1,k+1

As2
0,k+1


 = L

s2

2




As
2,k

As
1,k

As
0,k


 .

Then, we have 


As
0,k+1

As
1,k+1

As
2,k+1


 =

1
2
(Ls1

2 + Ls2
2 )




As
0,k

As
1,k

As
2,k


 ,

where

Ls2
2 = P2L

s2

2 P2, P2 =




0 0 1
0 1 0
1 0 0


 .

Considering Taylor expansions of Ls1
2 and L

s2

2 yields

Ls1
2,2 −

1
2
M2

2 =
1
2




0 −b20f10 + b21f10 − b21f20 (I)
b10b20 − b10b21 + b20f21 0 (II)
−b10b20 + b10b21 − b20f21 b20f10 − b21f10 + b21f20 0




and

L
s2

2,2 −
1
2
P2M

2
2 P2 =

1
2




0 −b20f10 + b21f10 − b21f20 (III)
b10f20 − f10f21 + f20f21 0 (IV)
−b10f20 + f10f21 − f20f21 b20f10 − b21f10 + b21f20 0


 ,
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where

(I) = b10f20 − f10f21 + f20f21 (II) = −b10f20 + f10f21 − f20f21

(III) = b10b20 − b10b21 + b20f21 (IV) = −b10b20 + b10b21 − b20f21.

Then, we have

Ls1
2,2 + Ls2

2,2 −M2
2 = 0.(3.10)

In general, the approximation (As
i,k+1)

n
i=0 obtained by SCR2 applied to (3.1)

is characterized as



As
0,k+1

As
1,k+1
...

As
n,k+1


 = Ls

n




As
0,k

As
1,k
...

As
n,k


 =

1
2
(Ls1

n + Ls2
n )




As
0,k

As
1,k
...

As
n,k


 ,(3.11)

where

Ls2
n = PnL

s2

n Pn

and Pn is the (n + 1)× (n + 1) permutation matrix such that

(Pn)ij =
{

1 if i + j = n + 2,
0 otherwise.

Lemma 3.6. Consider a parallel reaction with (n+1) substances, that is com-
posed of n reversible reactions:

An

fn0
bn0

A0(3.12a)

An

fn1
bn1

A1(3.12b)

...

An

fn(n−1)


bn(n−1)

An−1.(3.12c)

Applying the CR2 algorithm to this problem in the following ordering:

A0 ® An, A1 ® An, . . . , An−1 ® An

gives 


A0,k+1

A1,k+1

...
An,k+1


 = Λn




A0,k

A1,k

...
An,k


 ,
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where (Ai,k+1)n
i=0 is an approximation to (Ai(t))n

i=0 at t = tk+1 and Λn is an
(n + 1)× (n + 1) matrix. Then, we have

Λn =




fn0∆t

diag(1− bnj∆t)n−1
j=0

...
fn(n−1)∆t

bn0∆t · · · bn(n−1)∆t 1− (
∑n−1

j=0 fnj)∆t


 + O((∆t)2).

Proof. It is easy to show that the statement holds for n = 2 by using Taylor’s
theorem. Suppose that the statement is true for a parallel reaction which con-
sists of n substances. Consider a parallel reaction with (n + 1) substances. By
the inductive hypothesis, the approximate solution (Ai,k+1)n

i=0 to the solution
(Ai(t))n

i=0 at t = tk+1 obtained by applying CR2 to (3.12) is written as follows:

[
A0,k+1

Atemp
n

]
=

[
1− bn0∆t + O((∆t)2) fn0∆t + O((∆t)2)

bn0∆t + O((∆t)2) 1− fn0∆t + O((∆t)2)

] [
A0,k

An,k

]
(3.13a)




A1,k+1

...
An−1,k+1

An,k+1


=Λn−1




A1,k

...
An−1,k

Atemp
n


 ,(3.13b)

where
(3.14)

Λn−1 =




fn1∆t

diag(1− bnj∆t)n−1
j=1

...
fn(n−1)∆t

bn1∆t · · · bn(n−1)∆t 1− (
∑n−1

j=1 fnj)∆t


 + O((∆t)2).

By (3.13), we have
(3.15)

Λn =




1 0 · · · 0
0
... Λn−1

0







1− bn0∆t + O((∆t)2) 0 · · · 0 fn0∆t + O((∆t)2)
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
bn0∆t + O((∆t)2) 0 · · · 0 1− fn0∆t + O((∆t)2)




.

By substituting (3.14) into (3.15), we have the expansion form of Λn, that is,
the statement is true for a parallel reaction with (n + 1) substances. ¤

Lemma 3.7. Under the same assumptions as in Lemma 3.6, we assume that

Λn = Λn,0 + Λn,1∆t + Λn,2(∆t)2 + O((∆t)3).
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Then,

Λn,2 =

2
66666666666664

bn0
2 (bn0 + fn0) 0 0 · · · 0 (I)

bn0fn1
bn1
2 (bn1 + fn1) 0

. . .
.
.
. (II)

bn0fn2 bn1fn2

. . .
. . .

.

.

.
.
.
.

.

.

.
.
.
.

. . . 0
.
.
.

bn0fn(n−1) bn1fn(n−1) · · · · · · bn(n−1)
2 (bn(n−1) + fn(n−1)) (III)

(IV) (V) · · · · · · − bn(n−1)
2 (bn(n−1) + fn(n−1)) (VI)

3
77777777777775

,

where

(I) = − fn0

2
(bn0 + fn0) (II) = − fn1

2
(2fn0 + bn1 + fn1)

(III) = − fn(n−1)

2
(2

n−2X

i=0

fni + bn(n−1) + fn(n−1)) (IV) = − bn0

2
(bn0 + fn0 + 2

n−1X

i=1

fni)

(V) = − bn1

2
(bn1 + fn1 + 2

n−2X

i=2

fni) (VI) =
1

2

n−1X

i=0

fni(bni + fni) +
X

i<j

fnifnj .

Proof. By the Taylor expansion of Λ2, the statement holds for n = 2. Suppose
that the statement is true for Λn−1,2. By Lemma 3.6, we have

Λn−1 = I+




−bn1 fn1

. . .
...

−bn(n−1) fn(n−1)

bn1 · · · bn(n−1) −∑n−1
i=1 fni


 ∆t+Λn−1,2(∆t)2+O((∆t)3).

It follows

Λn,2 =

»
0 0
0 Λn−1,2

–

+

2
6666664

0 0 · · · 0 0
0 −bn1 fn1

..

.
. . .

..

.
0 −bn(n−1) fn(n−1)

0 bn1 · · · bn(n−1) −Pn−1
i=1 fni

3
7777775

2
6666664

−bn0 fn0

0

. . .

0
bn0 −fn0

3
7777775

+
1

2

2
6666664

bn0(bn0 + fn0) −fn0(bn0 + fn0)
0

. . .

0
−bn0(bn0 + fn0) fn0(bn0 + fn0)

3
7777775

=

»
0 0
0 Λn−1,2

–
+

2
6666664

bn0
2

(bn0 + fn0) 0 · · · 0 − fn0
2

(bn0 + fn0)

bn0fn1 0 · · · 0 −fn0fn1

..

.
..
.

. . .
..
.

..

.
bn0fn(n−1) 0 · · · 0 −fn0fn(n−1)

(I) 0 · · · 0 (II)

3
7777775

,
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where

(I) = −bn0

2

(
bn0 + fn0 + 2

n−1∑

i=1

fni

)
, (II) =

fn0

2

(
bn0 + fn0 + 2

n−1∑

i=1

fni

)
.

Hence, by the inductive hypothesis, we conclude that the statement is true for
Λn,2. ¤

Lemma 3.8. If the algorithm SCR2 is in company with the reverse order (2.6),
the matrix Ls

n in (3.11) has the Taylor expansion

Ls
n = Ls

n,0 + Ls
n,1∆t + Ls

n,2(∆t)2 + O((∆t)3)

= I + Mn∆t +
1
2
M2

n(∆t)2 + O((∆t)3),

where Mn is the matrix in (3.1).

Proof. As mentioned in the proof of Lemma 3.5, it is obvious that

Ls
n,0 = I, Ls

n,1 = Mn.

Let Dsi
n = Lsi

n,2 − 1
2M2

n for i = 1, 2. To complete the proof, it suffices to show
that

Ds1
n + Ds2

n = 0.

Because Ds2
n can be associated with Ds1

n by the permutation matrix Pn, we
only need to characterize entries of Ds1

n .
We first claim that

Ds1
n =

∑

i<j<k

D(i,j,k), 0 ≤ i, j, k ≤ n,(3.16)

where

D(i,j,k)

=

(i + 1)th (j + 1)th (k + 1)th
↓ ↓ ↓

1
2




0 −bkifji + bkjfji − bkjfki (I)
bjibki − bjibkj + bkifkj 0 (II)
−bjibki + bjibkj − bkifkj bkifji − bkjfji + bkjfki 0




←
←
←

(i + 1)th
(j + 1)th
(k + 1)th

with

(I) = bjifki − fjifkj + fkifkj , (II) = −bjifki + fjifkj − fkifkj

and other entries are zeros. The claim is verified by induction on n. By the
previous argument, we already know that

Ds1
2 = D(0,1,2).

We assume that the claim is true for a general reaction system with n substances
A0, A1, . . . , An−1, i.e.,

Ds1
n−1 =

∑

i<j<k

D(i,j,k), 0 ≤ i, j, k ≤ n− 1.
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Let us see how Ls1
n and Mn change when adding An into the general reaction

system with n substances. Since

L
s1
n = Λn

»
L

s1
n−1 0
0 1

–

= (I + Λn,1∆t + Λn,2(∆t)
2

+ O((∆t)
3
)

»
I + Mn−1∆t + L

s1
n−1,2(∆t)2 + O((∆t)3) 0

0 1

–
,

it follows that

Ls1
n,2 =

[
Ls1

n−1,2 0
0 0

]
+ Λn,1

[
Mn−1 0

0 0

]
+ Λn,2.

Also, noting the fact that

Mn =




fn0

Mn−1 − diag(bnj)n−1
j=0

...
fn(n−1)

bn0 · · · bn(n−1) −∑n−1
j=0 fnj


 ,

Lemma 3.6 gives

M2
n =

([
Mn−1 0

0 0

]
+ Λn,1

)2

=
[
M2

n−1 0
0 0

]
+

[
Mn−1 0

0 0

]
Λn,1 + Λn,1

[
Mn−1 0

0 0

]
+ Λ2

n,1.

Then, we have that

D
s1
n = L

s1
n,2 −

1

2
M

2
n

=

»
L

s1
n−1,2 − 1

2 M2
n−1 0

0 0

–
+

1

2
Λn,1

»
Mn−1 0

0 0

–
− 1

2

»
Mn−1 0

0 0

–
Λn,1 + Λn,2 −

1

2
Λ

2
n,1.

Looking at Mn−1,Λn,1 and Λn,2 carefully, all (i, j) entries contain subindex
n, (i− 1) or (j − 1). It implies that we can write

1
2
Λn,1

[
Mn−1 0

0 0

]
− 1

2

[
Mn−1 0

0 0

]
Λn,1+Λn,2− 1

2
Λ2

n,1 =
∑

i<j

Bijn 0 ≤ i, j < n,

where Bijn is a matrix whose entries consist of products of bni, fni, bnj , fnj , bji,
and fji. Now let us compute Bijn in details. For a matrix M , we define (M)ijn

by a matrix whose entries consist of products of bni, fni, bnj , fnj , bji and fji

among entries of M . We detail Bijn for all i, j with 0 ≤ i, j < n as fol-
lows:

E1 =
(

Λn,1

[
Mn−1 0

0 0

])

ijn

=

(i + 1)th (j + 1)th (n + 1)th
↓ ↓ ↓


bjibni −bnifji 0
−bjibnj bnjfji 0

bji(bnj − bni) fji(bni − bnj) 0



←
←
←

(i + 1)th
(j + 1)th
(n + 1)th
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E2 =
([

Mn−1 0
0 0

]
Λn,1

)

ijn

=

(i + 1)th (j + 1)th (n + 1)th
↓ ↓ ↓


bjibni − fjibnj −bjifni + fjifnj

− bjibni fjibnj bjifni − fjifnj

0 0 0



←
←
←

(i + 1)th
(j + 1)th
(n + 1)th

E3 = (Λn,2)ijn

=

(i + 1)th (j + 1)th (n + 1)th
↓ ↓ ↓


1

2(n−1)bni(bni + fni) 0 (I)
bnifnj

1
2(n−1)bnj(bnj + fnj) (II)

− 1
2(n−1)bni(bni + fni)− bnifnj − 1

2(n−1)bnj(bnj + fnj) (III)



←
←
←

(i + 1)th
(j + 1)th
(n + 1)th

(I) = − 1
2(n−1)fni(bni + fni)

(II) = − 1
2(n−1)fnj(bnj + fnj)− fnifnj

(III) = 1
2(n−1)fni(bni + fni) + 1

2(n−1)fnj(bnj + fnj) + fnifnj .

Note that (n − 1) appears in the denominators. In the (i + 1, i + 1) entry,
1
2bni(bni + fni) is independent of j. Therefore, we distribute it equally to all
(Λn,2)ijn of which (i+1)th column is nonzero. In other entries, (n−1) appears
with the same reason.

E4 =
(
(Λn,1)

2
)

ijn

=

(i + 1)th (j + 1)th (n+1)th
↓ ↓ ↓2

64
1

(n−1) bni(bni + fni) bnjfni (I)

bnifnj
1

(n−1) bnj(bnj + fnj) (II)

− 1
(n−1) bni(bni + fni)− bnifnj (III) (IV)

3
75

← (i + 1)th
← (j + 1)th
← (n + 1)th

(I) = − 1
(n−1)fni(bni + fni)− fnifnj

(II) = − 1
(n−1)fnj(bnj + fnj)− fnifnj

(III) = − 1
(n−1)bnj(bnj + fnj)− bnjfni

(IV) = 1
(n−1)fni(bni + fni) + 1

(n−1)fnj(bnj + fnj) + 2fnifnj ,

where for each El, El(m1, m2) = 0 ∀m1,m2 /∈ {i + 1, j + 1, n + 1}. Then, we
have

Bijn =
1
2
E1 − 1

2
E2 + E3 − 1

2
E4

=

(i + 1)th (j + 1)th (n + 1)th
↓ ↓ ↓

1

2

2
4

0 −bnifji + bnjfji − bnjfni (I)
bjibni − bjibnj + bnifnj 0 (II)
−bjibni + bjibnj − bnifnj bnifji − bnjfji + bnjfni 0

3
5
←
←
←

(i + 1)th
(j + 1)th
(n + 1)th

= D(i,j,n),
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where

(I) = bjifni − fjifnj + fnifnj , (II) = −bjifni + fjifnj − fnifnj .

The inductive hypothesis yields

Ds1
n =

∑

i<j<k<n

D(i,j,k) +
∑

i<j<n

D(i,j,n)

=
∑

i<j<k

D(i,j,k).

Similarly, we obtain the relationship

L
s2

n,2 −
1
2
PnM2

nPn =
∑

i<j<k

D(n−k,n−j,n−i).

Note that
D(i,j,k) + PnD(n−k,n−j,n−i)Pn = 0.

Consequently, we find that

Ds2
n = Ls2

n,2 −
1
2
M2

n

= Pn(L
s2

n,2 −
1
2
PnM2

nPn)Pn

= Pn(
∑

i<j<k

D(n−k,n−j,n−i))Pn

= −
∑

i<j<k

D(i,j,k),

that is,
Ds1

n + Ds2
n = 0.

The proof is complete. ¤

By using the same arguments as in Theorem 3.4 based on Lemma 3.5 and
Lemma 3.8, we can easily get the following theorem.

Theorem 3.9. The algorithm SCR2 applied to (3.1) has the order of conver-
gence 2, which is in company with the reverse order either (2.5) or (2.6).

4. Numerical experiments

In this section, we present numerical results which verify the theoretical
results in the previous sections. In addition, we provide an example of the
non-conserved system which can be converted to the conserved one.

Figure 2-(a) depicts a circular reaction with three substances A,B and C
with initial values A(0) = 1, B(0) = 2 and C(0) = 3. The system of ODEs
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Figure 3. Stability of the CR2 algorithm

Table 1. Convergence behaviors of CR2, SCR2 and BDF2 by
means of ‖y(tF ) − yN‖1 and

∑N
i=1 ‖y(ti) − yi‖1∆t with ∆t

varying from 10−1 to 10−6 where N = tF /∆t with tF = 3

‖y(tF )− yN‖1
PN

i=1 ‖y(ti)− yi‖1∆t
∆t CR2 SCR2 BDF2 CR2 SCR2 BDF2

10−1 3.4182e-01 1.6979e-01 3.0723e-12 1.0295 5.2196e-01 6.4610e-02

10−2 3.2857e-02 1.4643e-02 1.5698e-13 9.9615e-02 4.4658e-02 3.5786e-03

10−3 2.1366e-03 3.0403e-04 2.3378e-12 6.5804e-03 9.3141e-04 4.9409e-04

10−4 1.8653e-04 3.0979e-06 2.4701e-11 5.7888e-04 9.5901e-06 8.9323e-06

10−5 1.8376e-05 3.1126e-08 4.2676e-11 5.7083e-05 9.6640e-08 9.6306e-08

10−6 1.8348e-06 3.7633e-10 7.4494e-10 5.7002e-06 1.0620e-09 2.5923e-09

becomes

d

dt




A(t)
B(t)
C(t)


 =



−1001 10 1
1000 −15 10

1 5 −11







A(t)
B(t)
C(t)


 = M




A(t)
B(t)
C(t)


 .(4.1)

Many explicit numerical methods such as Euler’s method and the fourth order
Runge-Kutta method (RK4 method) in common use have their pros and cons.
The structure of explicit methods is so simple that they are popular and may
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diminish computing cost at each time step. But, due to its conditional stability,
the restriction on the choice of the size of time step is troublesome. For a stiff
problem such as (4.1), the drawback of explicit methods is more severe. Note
that Euler’s method for (4.1) is stable only if

∆t ≤ S1

λmin
≈ 1.9782× 10−3 with S1 = −2

and the RK4 method for (4.1) is stable only if

∆t ≤ S2

λmin
≈ 2.7531× 10−3 with S2 ≈ −2.7853,

where λmin is the minimum nonzero eigenvalue of M and

Si = min
z∈∂Di⊂C

Re(z), i = 1, 2

with the stability domain Di of Euler’s method and the RK4 method, respec-
tively. Figure 3 shows that the CR2 algorithm gives a stable approximation
even if a large ∆t is used. For a stiff problem, Gear’s method is widely used in
order to avoid the problems of instability due to the stiffness. We investigate
the difference between two proposed methods and one of Gear’s method, a two-
step backward differentiation formula (BDF2) which is an A-stable method of
order 2. BDF2 takes a long time to solve a linear system. Moreover, we should
pay special attention during the process of solving the relevant linear system
with BDF2 because it may be ill-conditioned for a large ∆t. Hence, two ex-
plicit algorithms CR2 and SCR2 are superior to BDF2 in view of efficiency and
simplicity of implementation. To observe the convergence speed of three meth-
ods, two different errors ‖y(tF ) − yN‖1 and

∑N
i=1 ‖y(ti) − yi‖1∆t are shown

in Table 1, where ‖y(tF ) − yN‖1 is computed at the terminal point tF = 3
and

∑N
i=1 ‖y(ti)− yi‖1∆t is calculated over all discrete time steps t = ti with

N = tF /∆t. Note that the performance of SCR2 is comparable to that of
BDF2 over all discrete time steps while BDF2 shows more accurate results at
the terminal point tF .

Next, we consider a somewhat complicated general reaction system in Fig-
ure 2-(b) with initial values

A(0) = 1, B(0) = 0, C(0) = 0, D(0) = 0, E(0) = 0 and F (0) = 0,

where

f1 = 0.5, f2 = 0.01, f3 = 5.0, f4 = 0.1, f5 = 0.1, f6 = 1.0,

b1 = 0.05, b2 = 0.001, b3 = 0.5, b4 = 0.01, b5 = 0.01, b6 = 1.0.

In order to illustrate convergence properties of two algorithms CR2 and SCR2,
two kinds of errors measured in the l1-norm and estimates of the order of
convergence are summarized in Tables 2 and 3. Table 2 gives errors ‖y(tF ) −
yN‖1 for varing ∆t and estimates of the convergence order corresponding to
‖y(tF )−yN‖1 where N = tF /∆t with the terminal point tF = 10. The numbers
presented in Table 2 imply that when the time step ∆t is halved, the errors
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Table 2. Convergence behaviors of the algorithms CR2 and
SCR2 by means of ‖y(tF ) − yN‖1 with ∆t varying from 1/2
to 1/256 where N = tF /∆t with tF = 10

CR2 SCR2

∆t ‖y(tF )− yN‖1 order ‖y(tF )− yN‖1 order
1/2 5.7923e-02 1.0089e-02
1/4 2.7704e-02 1.0640 3.4552e-03 1.5460
1/8 1.3454e-02 1.0421 1.2101e-03 1.5137
1/16 6.6209e-03 1.0229 3.6181e-04 1.7418
1/32 3.2836e-03 1.0118 9.9202e-05 1.8668
1/64 1.6350e-03 1.0059 2.5992e-05 1.9323
1/128 8.1584e-04 1.0030 6.6537e-06 1.9659
1/256 4.0750e-04 1.0015 1.6833e-06 1.9829

Table 3. Convergence behaviors of the algorithms CR2 and
SCR2 by means of

∑N
i=1 ‖y(ti)−yi‖1∆t with ∆t varying from

1/2 to 1/256 where N = tF /∆t with tF = 10

CR2 SCR2

∆t
∑N

i=1 ‖y(ti)− yi‖1∆t order
∑N

i=1 ‖y(ti)− yi‖1∆t order
1/2 1.4005 2.6305e-01
1/4 6.6803e-01 1.0680 7.0304e-02 1.9036
1/8 3.2096e-01 1.0575 1.8225e-02 1.9477
1/16 1.5670e-01 1.0344 4.7130e-03 1.9512
1/32 7.7354e-02 1.0185 1.2067e-03 1.9656
1/64 3.8422e-02 1.0095 3.0594e-04 1.9797
1/128 1.9147e-02 1.0048 7.7070e-05 1.9890
1/256 9.5573e-03 1.0024 1.9344e-05 1.9943

‖y(tF )−yN‖1 of CR2 and SCR2 decay linearly and quadratically, respectively.
On the other hand, Table 3 displays the errors

∑N
i=1 ‖y(ti) − y(i)‖1∆t and

estimates of the convergence order. According to Table 3, we confirm that
the algorithms CR2 and SCR2 converge of order 1 and 2, respectively, over the
whole interval (0, 10].

Finally, we slightly relax the requirement of the conserved system. Let us
consider a non-conserved system

d

dt

[
A(t)
B(t)

]
=

[−10 0.5
1 −1

] [
A(t)
B(t)

]
= Mv

[
A(t)
B(t)

]
,(4.2)
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Table 4. Convergence behaviors of the algorithms CR2 and
SCR2 by means of

∑N
i=1 ‖yv(ti)−yi

v‖1∆t with ∆t varying from
10−1 to 10−5 where yv(t) = [A(t), B(t)]T and N = tF /∆t with
tF = 5

CR2 SCR2

∆t
∑N

i=1 ‖yv(ti)− yi
v‖1∆t order

∑N
i=1 ‖yv(ti)− yi

v‖1∆t order
10−1 2.7803e-01 1.3788-01
10−2 2.6722e-02 1.0172 1.7209e-03 1.9038
10−3 2.6594e-03 1.0021 1.7650e-05 1.9890
10−4 2.6580e-04 1.0002 1.7695e-07 1.9989
10−5 2.6579e-05 1.0000 1.7660e-09 2.0009

where A(0) = 1 and B(0) = 10. We introduce an artificial substance C which
plays a role as a sink substance in the following conserved system

d

dt




A(t)
B(t)
C(t)


 =



−10 0.5 0
1 −1 0
9 0.5 0







A(t)
B(t)
C(t)


 = Mc




A(t)
B(t)
C(t)


 ,(4.3)

where C(0) = 0. It is easily expected that the modification of the non-conserved
system into the conserved system can be done provided Mv is columnwise-
diagonally dominant. Table 4 shows the errors for the approximations obtained
by applying the algorithms CR2 and SCR2 to (4.3).

Remark 4.1. Let us consider a non-conserved system where the relevant matrix
Mv violates the columnwise-diagonal dominance. Similarly to (4.3), the non-
conserved system can be converted into the conserved one by adding an artificial
substance which makes each column of the resultant matrix Mg add up to 0.
But, Mg differs from Mc in (4.3) in the fact that Mg has negative off-diagonal
entries. Unfortunately, our mathematical verification of the proposed methods
does not cover such a case. But in practice, we numerically observed that the
algorithms CR2 and SCR2 applied to the above case give the same performance
as in a linear reaction system (3.1) in view of both stability and convergence.

5. Conclusions

We proposed two numerical schemes CR2 and SCR2 applicable to linear
reaction systems. Since the CR2 algorithm is motivated by the exact solver
for a reversible reaction with two substances, it is very easy to implement.
On the other hand, the SCR2 algorithm, a symmetrized version of the CR2

algorithm, is enhanced in view of the convergence speed. Unlike most of explicit
methods, CR2 and SCR2 are absolutely stable in spite of their explicitness. We
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analyzed stability and convergence properties of CR2 and SCR2 and confirmed
the theoretical results by the numerical experiments.
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