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MORSE INEQUALITIES FOR MANIFOLDS WITH
BOUNDARY

Mostafa Esfahani Zadeh

Abstract. The aim of this paper is to provide a proof for a version of
the Morse inequalities for manifolds with boundary. Our main results
are certainly known to the experts on Morse theory, nevertheless it seems
necessary to write down a complete proof for it. Our proof is analytic and
is based on the J. Roe account of Witten’s approach to Morse Theory.

1. Introduction

The Morse inequalities is among the most fundamental results in differential
topology. For a Morse-Smale function on a closed manifold these inequalities
follow from the fact that the homology of the Thom-Smale complex is isomor-
phic to the singular homology of the manifold, c.f. [7]. In his very influential
paper [10], Witten used the Morse function to deform the de Rham complex
of the manifold and gave a purely analytic proof for the Morse inequalities.
In fact the Thom-Smale complex can be identified with a finite dimensional
subcomplex of the deformed de Rham complex. This subcomplex corresponds
to the small eigenvalues of the deformed Laplacian. This identification was
established by Helffer and Sjöstrand by using methods of the semi-classical
analysis. A simple proof of this identification is provided by Bismut-Zhang.
For a thorough discussion of this proof and other related matters we refer to
[11]. In this paper we will deal with the Morse inequalities when the underlying
manifold has non empty boundary.

Let M be a smooth manifold with boundary ∂M 6= ∅ and let f : M → R be a
smooth function whose critical points are either isolated nondegenerate located
in M\∂M or located on the boundary such that each connected component of
the boundary is a non degenerate critical sub manifold of index 0 or 1 in the
sense of Bott [4]. More precisely let ∂M = N+ t N− be a disjoint union of
closed manifolds so that f(u, y) = 1

2u
2 in a collar neighborhood [0, 1) × N+

while f(u, y) = − 1
2u

2 in a collar neighborhood [0, 1)×N−. The Bott index of
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each component of N+ is 0 while each component of N− has Bott index 1. In
both case f satisfies the Neumann condition

(1.1)
∂f

∂u
(0, y) = 0.

Let N+ = Na+ tNr+ and N− = Na− tNr− be disjoint union of closed man-
ifolds. The subscripts “a” and “r” refer respectively to absolute and relative
boundary condition that we explain in below. In sequel we consider a Rie-
mannian metric on M which is Euclidian around non degenerate critical points
with respect to coordinates provided by Morse lemma. Moreover in the collar
neighborhood (1, 0]× ∂M it is assumed to take the product form g = d2u+ g0
where g0 is a Riemannian metric on ∂M . So the flow of ∇f , the gradient of f
with respect to this metric, is defined for t ∈ R and limit points of each integral
curve is either a non degenerate critical point in the interior of M or a point
on ∂Mi. Put

βk = dimHk
dr(M,Nr),

γk = dimHk
dr(Nr−),

ηk = dimHk
dr(Na+).

We denote by ck the number of nondegenerate critical points of Morse index k.
The aim of this note is to provide a proof for the following theorem by using
the Witten approach to Morse theory [10].

Theorem 1. The following inequalities hold for 0 ≤ k ≤ n

µk − µk−1 + · · ·+ (−1)kµ0 ≥ βk − βk−1 + · · ·+ (−1)kβ0,

where
µk = ck + ηk + γk−1.

The equality holds for k = n.

Notice that the equality for k = n reads

(1.2)
n∑

k=0

(−1)n−kck = χ(M,Nr) + χ(Na+)− χ(Nr−).

As a special case let dimM be an odd integer and let f be a Morse function
on M such that ∂M = Na+. Then the above relation reads

n∑

k=0

(−1)n−kck = χ(M) + χ(∂M).

Now consider the Morse function −f for which ∂M = Na−, we get the following
relation

−
n∑

k=0

(−1)n−kck = χ(M).
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Comparing these two relations one gets the following relation proving that the
parity of the Euler character is a cobordism invariant.

χ(∂M) = −2χ(M).

For example the Euler characteristic of a manifold which is the boundary of a
contractible odd dimensional manifolds, e.g. S2p equals −2. A similar argu-
ment gives the relation χ(∂M) = 2χ(M,∂M). Of course these relations can be
obtained by homotopy theory and Poincare duality.

2. Analytical properties of deformed Laplacian with
boundary conditions

To give a proof for Theorem 1, we begin by studying the Laplacian oper-
ator, and its deformation, on the de Rham complex endowed with boundary
conditions. Let ω be a differential k-form on M . In collar neighborhood U of
∂M it takes the following form

ω|U = ω1(u, y) + du ∧ ω2(u, y),

where ωi’s are u-depending differential forms on ∂M . Differential form ω sat-
isfies the relative boundary condition Br if

(2.1) ω1(0, y) = 0 and
∂ω2

∂u
(0, y) = 0.

Differential form ω satisfies the absolute boundary condition Ba if

(2.2)
∂ω1

∂u
(0, y) = 0 and ω2(0, y) = 0.

Clearly ω satisfies Br if and only if ∗ω satisfies Ba, where ∗ is a locally defined
Hodge star operator with respect to a local orientation. From now on we impose
the relative boundary condition on Nr and the absolute boundary condition
on Na and denote this setting of boundary condition by B. By performing the
completion of the set of smooth differential forms satisfying the boundary condi-
tions B with respect to appropriate Sobolev norm, we obtain the Sobolev spaces
W l(M,Λ∗T ∗M ;B). The inclusion W l(M,Λ∗T ∗M ;B) ↪→ W l(M,Λ∗T ∗M) is
an isometry with closed image. So all classical theorems in the theory of the
Sobolev spaces, e.g. Sobolev embedding theorem, Rellich’s theorem and the
elliptic estimate hold also in this context.

Let η be an another differential form on M taking the form η = η1 + du∧ η2
in collar neighborhood of ∂M . The Green formula for D := d+ δ (c.f. [3, page
24]) takes the following form in our context

(2.3) 〈Dω, η〉 − 〈ω,D η〉 = −
∫

∂M

〈ω1, η2〉+
∫

∂M

〈ω2, η1〉.

So the operator D is formally self adjoint provided ω and η satisfy both the
relative or the absolute boundary conditions. Consequently D is a formally self
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adjoint operator on Ω∗(M,B) and Laplacian operator 4 := D2 is a formally
positive second order elliptic operator on Ω∗(M,B) and

ker4 = kerD.

The heat kernel of e−t4 may be constructed by means of heat kernels of bound-
ary problems on half cylinder R≥0×∂M and heat kernel of Laplacian on closed
manifold M t∂M M (see [1, page 55]). Since the function f satisfies the Neu-
mann condition (1.1), the multiplication by e±sf preserves the boundary con-
dition B. Here, and so on, s is a non negative real number. Let ds := e−sfd esf

and δs = esfδe−sf and put

Ds := ds + δs and 4s := D2
s .

As in aboveDs is formally self adjoint, so the Witten Laplacian4s is a formally
positive elliptic differential form and

(2.4) ker4s = kerDs = ker ds ∩ ker δs.

The Hessian of the function f is the following 2-tensor

H(X,Y ) := X.(Y.f)− (∇XY ).f .

Let {ei} be a local orthonormal basis for TM and α ∈ ΛkT ∗M . Put Lei(α) :=
ei.α and Rei(α) := (−1)kα.ei, where dot “.” denotes the Clifford multipli-
cation. More explicitly Lei(α) = ei ∧ α + eiyα and Rei(α) = ei ∧ α − eiyα,
where y denotes the interior multiplication, cf. [8, page 49]. The following
relation defines a smooth section of End(Λ∗T∗M) which is independent of the
orthonormal basis

H =
∑

i,j

H(ei, ej)LeiRej .

With these notation we have the following relation [8, Proposition 9.17]

(2.5) 42
s = 42 + sH + s2|df |2.

Notice that the operator H preserves clearly the boundary condition B. More-
over, due to the relation (1.1) the multiplication operator |df | preserve this
boundary condition too. Using (2.5) and the Duhamel formula (see, e.g. [2]),
one can construct the heat operator e−t4s by means of e−t4. The heat op-
erator is a smoothing operator on L2(M,Λ∗T ∗M), so the Sobolev embedding
theorem implies that it is a compact self adjoint operator on this Hilbert space.
So, for each 0 ≤ k ≤ n, the Hilbert space L2(M,∧kT ∗M) may be decomposed
to orthogonal sum of eigenspaces of 4k

s .

(2.6) L2(M,∧kT ∗M) = ⊕λs≥0Ek
λs
.

The following sequence is exact for 0 6= λs ∈ Spec(4s)

(2.7) 0 → E0
λs

ds→ E1
λs

ds→ · · · ds→ En−1
λs

ds→ En
λs
→ 0.

Notice that as a part of assertion, the exterior differential preserves the bound-
ary conditions when it is restricted to eigenspaces of 4s. We refer to [5, page
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49] for a proof of this assertion. Since ds preserves ker4 the above assertion
implies that the cohomology of the deformed de Rham complex

0 → Ω0(M,B) ds→ Ω1(M,B) ds→ · · · ds→ Ωn(M,B) → 0,

is isomorphic to ker4s and the isomorphism is induced from equality (2.4).
Moreover the multiplication by esf provides an isomorphism between this com-
plex and the ordinary de Rham complex corresponding to s = 0. The cohomol-
ogy of de Rham complex is the relative cohomology group H∗

dr(M.Nr). So, as
an immediate consequence of the above discussion we get the following relation

(2.8) βk = dim ker4k
s .

The basic analytical tool in the next section is the finite propagation speed
property of wave equation that we are going to explain. Let ω and ω′ be two
differential p-forms on M which satisfy the boundary condition B. There is
a unique smooth t-depending differential p-form ωt satisfying the boundary
condition B and the initial conditions ω0 = ω and (∂tωt)t=0 = ω′ such that ωt

is a solution of the wave equation

∂2ωt

∂2t
+D2

s ωt = 0 .

For the proof of the above facts and the following lemma we refer to [9, pages
145–148].

Lemma 2 (unite propagation speed property of wave equation). With the
above notation if ω is compactly supported then ωt is supported inside the dis-
tance |t| of supp(ω).

3. Derivation of the Morse inequalities

Let φ be a non negative rapidly decreasing function on R≥0 satisfying φ(0) =
1. The operator φ(4k

s) being a smoothing operator, is of trace class, so we can
define νk(s) := Trφ(4k

s). The following proposition is a generalized version
of the Proposition 14.3 of [8] in the presence of the boundary. We prove this
theorem by using the spectral resolution provided by eigenvectors of 4s.

Proposition 3. The following inequalities hold for 0 ≤ k ≤ n

(3.1) νk(s)− νk−1(s) + · · ·+ (−1)kν0(s) ≥ βk − βk−1 + · · ·+ (−1)kβ0.

and equality holds for k = n.

Proof. Consider the following exact sequence coming from (2.7)

(3.2) 0 → E0
λs

ds→ E1
λs

ds→ · · · ds→ Ek
λs

ds→ Im dk
s → 0.

Obviously φ(4s) restricts to a linear operator on Im dk
s . The trace of this

restriction, denoted by r(φ, λs, k), is non negative for 0 ≤ k ≤ n and is zero
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for k = n. Since 4s|Eλs
= λs id, the trace of the restriction of φ(4s) to Ej

λs

equals φ(λs).dimEj
λs

. So

r(φ, λs, k)− trφ(4k
λs|Ek

λs

) + trφ(4k−1

λs|Ek−1
λs

)− · · ·+ (−1)ktrφ(40
λs|E0

λs

) = 0.

By summation over all λs 6= 0 and using the fact that φ(0) = 1 and (2.8) we
get
∑

λs 6=0

r(φ, λs, k)− (µk(s)−βk)+ (µk−1(s)−βk−1)−· · ·+(−1)k(µ0(s)−β0) = 0.

These inequalities prove the assertion of the proposition because for 0 ≤ k ≤ n
one has r(φ, λs, k) ≥ 0 and equality holds for k = n. ¤

With above proposition, to prove the Morse inequalities of Theorem 1 we
have to study the traces νk(s) = Trφ(4k

s) when s goes to infinity. For a small
positive number ρ < 1/4, let Mρ denote the disjoint union of ρ-neighborhoods
of critical points and the ρ-collar neighborhood (ρ, 0] × ∂M of the boundary.
The positive number ρ is so small that each connected component of M4ρ

contains only one critical point or one connected component of boundary ∂M .
We recall that φ(4k

s) is a smoothing operator with smooth kernel K(s, x, x′) ∈
∧kTxM ⊗ ∧kTx′M .

Proposition 4. Let φ be a rapidly decreasing even function such that the
fourier transform of function ψ defined by ψ(t) := φ(t2) is supported in (−ρ, ρ).
When s goes toward infinity, the kernel K(s, x, x) of φ(4k

s) goes uniformly to
0 for x in M\M2ρ.

Proof. In the complement of M4ρ one has |df | ≥ c for some positive constant
c. So, using the relation (2.5), one get the following estimate

(3.3) 〈D2
sω, ω〉2 ≥

1
2
cs2‖ω‖22 if supp(ω) ⊂M4ρ.

Using this inequality, the finite propagation speed property of Lemma 2 and
classical theorem of Sobolev spaces W k(M,ΛT ∗M ;B), the proof of the Propo-
sition 14.6 in [8] goes over verbatim and prove this proposition. ¤

Let β be a smooth function on M which is supported in M3ρ and is equal
to 1 on M2ρ. The above lemma shows that

(3.4) lim
s→∞

Trφ(4k
s) = lim

s→∞
Tr β̄φ(4k

s),

where β̄ is the pointwise multiplication by β. So, the next step is to study the
asymptotic behavior of Tr β̄φ(4k

s) when s goes to infinity. From now on we
consider M4ρ either with coordinates given by Morse lemma around the non
degenerate critical points, or by collar coordinates (u, y) in (4ρ, 0] × ∂M . We
assume that the Riemannian structure is Euclidian around critical points and
is of product form du2 +g0 in the collar neighborhood. Using these coordinates
we can identify the differential form supported in M4ρ with differential forms
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supported either in the 4ρ-neighborhood of origin in Rn or in product space
(4ρ, 0]×∂M . In the neighborhood of a critical point x0 ∈M with Morse index
r, the function f takes the following form

(3.5) f(x1, . . . , xn) = f(x0)− 1
2
x2

1 − · · · −
1
2
x2

r + · · ·+ 1
2
x2

n.

So the deformed Laplacian 4k
s given by relation (2.5) coincides with the fol-

lowing operator acting on Ωk(Rn)

(3.6) Lk
s = −

n∑

j=1

∂2

∂2xj
+ s2x2

j + sεjZj .

Here εj = ±1 is the sign of the coefficient of x2
j in the expression (3.5). Moreover

Zj := [dxj ∧ ., dxjx.]. In the collar neighborhood [0, 1)×N+ we have f(u, y) =
1
2u

2. So the expression (2.5) for 4k
s gives the following operator acting on

⊕ε=0,1Ωε([0, 1), B)⊗ Ωk−ε(N+)

(3.7) Lk
s = (A0

s +4k
N+

)⊕ (A1
s +4k−1

N+
),

where

Aε
s = − ∂2

∂u2
+ s2u2 + (−1)ε+1s.

In the collar neighborhood [0, 1)×N− we have f(u, y) = − 1
2u

2. So the expres-
sion (2.5) for 4k

s gives the following operator acting on ⊕ε=0,1Ωε([0, 1), B) ⊗
Ωk−ε(N−)

(3.8) Lk
s = (A0

s +4k
N−)⊕ (A1

s +4k−1
N− ),

where

Aε
s = − ∂2

∂u2
+ s2u2 + (−1)εs.

In above discussion 4k−1
N+

and 4k−1
N− are, respectively, the Laplacian operators

on N+ and N−.

Proposition 5. Let Lk
s denote any one of operators given by (3.6), (3.7) or

(3.8) and let β̄ be the corresponding operator defined in above. The following
equality holds

Tr β̄φ(4k
s)) = Tr β̄φ(Lk

s).

Here φ(4k
s) and φ(Lk

s) are bounded operator on different L2-Hilbert spaces.

Proof. Clearly 4s = D2
s and Ls = A2

s where As is a differential operator which
is equal to Ds in M4ρ. Define the function ψ by ψ(t) := φ(t2). To prove the
proposition it suffices to prove the following equality,

ψ(Ds)ω = ψ(As)ω

provided that ω is supported in M3ρ. For this purpose notice that the relations
ωt := cos(tDs)ω and ω′t := cos(tAs)ω are smooth solutions of wave equation
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with the same initial conditions. Therefore the unite propagation speed prop-
erty of Lemma 2 implies the equality ωt = ω′t for |t| < ρ. Using the fact that
ψ̂ is an even function supported in [−ρ, ρ] we get

ψ(Ds)ω =
1
2π

∫ ρ

−ρ

ψ̂(t)eitDsω dt

=
1
π

∫ ρ

0

ψ̂(t) cos(tDs)ω dt

=
1
π

∫ ρ

0

ψ̂(t) cos(tLs)ω dt

= ψ(As)ω.

This completes the proof of the proposition. ¤

In view of the above proposition, for computing νk(s) when s goes toward
∞, it suffices to compute Tr(β̄Lk

s), at s = ∞, where Lk
s is given by relations

(3.6), (3.7), and (3.8).
Concerning the operator Lk

s given by (3.6), the following relation holds, cf.
[8, Lemma 14.11]

(3.9) lim
s→∞

Tr(β̄ φ(Lk
s)) =

{
0, k 6= r
1, k = r.

Now we are going to compute lims→0 Tr (β̄φ(Lk
s)) for Lk

s of relations (3.7)
and (3.8). For this purpose, we summarize some basic properties of the one
dimensional harmonic oscillator operator (see [8, Chapter 9])

− ∂2

∂2u
+ s2u2 : S(R) → S(R),

where S(R) denotes the space of smooth rapidly decreasing functions on R. The
eigenvalues of this operator are (2p+1)s for p = 0, 1, 2, . . . and each eigenvalue
has multiplicity one. The corresponding eigenfunctions have the following form

ϑp(s, u) = (2psp+1p!)−
1
2

(
− d

du
+ su

)p

e−
su2
2 .

In particular these eigenfunctions satisfy the Dirichlet boundary condition when
p is odd and the Neumann condition when p is even. Another basic property is
related to ϑ0. If β is a rapidly decreasing continuous function defined around
0 ∈ R, then

(3.10) lim
s→∞

〈(β(·)ϑ0(s, ·)), ϑ0(s, ·)〉 = β(0).

Obviously the harmonic oscillator operator may be considered as an operator
on the Schwartz space S(R) du of differential 1-forms. The eigenvalues of this
operator are the same and the eigenvectors are ϑp(s, u) du.
In what follows we will need to consider a sequence φm; m ∈ N of rapidly
decreasing non negative even functions on R satisfying φm(0) = 1 such that
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the Fourier transforms ψ̂m is supported in (−ρ, ρ) where ψm(t) = φm(t2).
Moreover the sequence φm converges uniformly to zero outside the compact
neighborhoods of 0 ∈ R.

3.0.1. Cylindrical operators arising from N+. On the product space R≥0×N+

we consider the deformed Laplacian operator Lk
s = Aε

s +4N+ given by (3.7)
and acting on Ωε([0, 1), Br)⊗ Ωk−ε(∂M). Here

(3.11) Aε
s = − ∂2

∂u2
+ s2u2 + (−1)ε+1s.

Let {ψk
λk
}λk

be a spectral resolution for 4k
s . So the eigenvectors of the restric-

tion of Lk
s to R≥0 ×Nr+ with respect to boundary condition (2.1) are

ϑ2l+1 ⊗ ψk
λk

; ϑ2l du⊗ ψk−1
λk−1

, l = 0, 1, 2, . . .

so

Tr β̄φm(Lk
s|R≥0×Nr+

) =
∑

l, λk

φm(s+ 4ls+ λk)〈β(·)ϑ2l+1(s, ·), ϑ2l+1(s, ·)〉

+
∑

l,λk−1

φm(2s+ 4ls+ λk−1)〈β(·)ϑ2l(s, ·), ϑ2l(s, ·)〉.

The function φm is rapidly decreasing at infinity and the arguments of φm

appearing in above formula go to infinity when s do, so

(3.12) lim
s→∞

Tr β̄φm(Lk
s|R≥0×Nr+

) = 0.

Now we consider the case of Lk
s|R≥0×Na+

, given by (3.8), with respect to absolute
boundary conditions (2.2). According to above discussion, the eigenvectors of
this operators are

ϑ2l ⊗ ψk
λk

; ϑ2l+1 du⊗ ψk−1
λk−1

, l = 0, 1, 2, . . . .

So we have

Tr β̄φm(Lk
s|R≥0×Nr+

) =
∑

l, λk

φm(4ls+ λk)〈β(·)ϑ2l(s, ·), ϑ2l(s, ·)〉

+
∑

l,λk−1

φm(3s+ 4ls+ λk−1)〈β(·)ϑ2l+1(s, ·), ϑ2l+1(s, ·)〉.

The argument of φm is second summation appearing in above equalities go all
toward infinity when s do, so this sum has no contribution when s goes to infin-
ity. The arguments of φm in the first summation, except those corresponding
to l = λk = 0, have no contribution because φm’s are rapidly decreasing at
infinity and because the sequence {φm}m converges uniformly to zero out of
compact neighborhoods of 0 ∈ R. Therefore

lim
s,m→∞

Tr β̄φm(Lk
s|R≥0×Na+

) = lim
s,m→∞

∑

λk=0

φm(0)〈β(·)ϑ0(s, ·), ϑ0(s, ·)〉.
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Now using the relation (3.10) and using the Hodge theory on Na+ we conclude

(3.13) lim
s→∞

Tr β̄ φm(Lk
s|R≥0×Na+

) = ηk.

3.0.2. Cylindrical operators arising from N−. On the product space R≥0×N−
we consider the deformed Laplacian operator Ls = Aε

s +4j
∂M given by (3.8)

and acting on Ωε([0, 1), Br)⊗ Ωj(∂M). Here

(3.14) Aε
s = − ∂2

∂u2
+ s2u2 + (−1)εs.

The eigenvectors of Lk
s with respect to boundary condition (2.1) are

ϑ2l+1 ⊗ ψk
λk

; ϑ2l du⊗ ψk−1
λk−1

, l = 0, 1, 2, . . .

therefore

Tr β̄φm(Lk
s|R≥0×Nr+

) =
∑

l, λk

φm(3s+ 4ls+ λk)〈β(·)ϑ2l+1(s, ·), ϑ2l+1(s, ·)〉

+
∑

l,λk−1

φm(4ls+ λk−1)〈β(·)ϑ2l(s, ·), ϑ2l(s, ·)〉.

All arguments of φm in the first summation go to infinity when s do, so this
summation has no non-vanishing contribution at s = ∞. The sequence φm

converges uniformly to zero out of compact neighborhoods of 0 ∈ R. So in
the second summation, only the terms corresponding to l = λk−1 = 0 may
have non vanishing contribution when s and m go to infinity. Therefore using
relation (3.10)

lim
s,m→∞

Tr β̄φm(Lk
s|R≥0×Nr−) = lim

s,m→∞

∑

λk−1=0

φm(0)〈β(·)ϑ0(s, ·), ϑ0(s, ·)〉

= γk−1.(3.15)

A similar discussion gives the following relation

(3.16) lim
m,s→∞

Tr β̄φm(Lk
s|R≥0×Na−)) = 0.

Now we are ready to give the proof of Theorem 1.

Proof of Theorem 1. Put µk(m, s) := Trφm(Lk
s). Let β be a continuous func-

tion supported in small neighborhoods of critical points of f and in collar
neighborhood (1, 0] × ∂M of boundary. The value of this function on critical
points and on boundary is assumed to be 1. Moreover in collar neighborhood
(1, 0]× ∂M it is assumed to be a function of u. We denote by β̄ the pointwise
multiplication of differential forms by β. From relation (3.4) we get

lim
s→∞

νk(m, s) = lim
s→∞

Tr β̄φm(4k
s).

Proposition 5 implies

Tr β̄φm(4k
s) =

∑
Tr β̄φm(Lk

s),



MORSE INEQUALITIES FOR MANIFOLDS WITH BOUNDARY 133

where the sum is taken over connected component of M4ρ. Now relations (3.9),
(3.12), (3.13), (3.15), and (3.16) together imply

lim
s,m→∞

∑
Tr β̄φm(Lk

s) = ck + ηk + γk−1.

This relation with analytic Morse inequalities given in Proposition 3 give the
desired results of the theorem. ¤

Remark 1. At the beginning of the paper we assumed that the Morse function
f : M → R takes the form f(u, y) = ± 1

2u
2 in the collar neighborhood [0, 1) ×

∂M . This condition may be weakened and we could consider smooth functions
which are Morse both in the interior and on the boundary of M . The restriction
of such a function, f : M → R, to the boundary is a Morse function too and the
inductive proof of the Morse lemma (see [6]) shows that the Morse functions f
takes the following form with respect to a local coordinates u, y1, . . . , yn−1

f(u, y) = f(x0)± 1
2
u2 ± 1

2
y2
1 ± · · · ±

1
2
y2

n−1.

Here (y1, . . . , yn−1) is a local coordinates system for ∂M around the critical
point x0 ∈ ∂M . For a connected component N of the boundary ∂M , let
ck,k′(N) denote the number of those critical points x0 ∈ N of f such that
indx0f = k and indx0fN = k′. As before let ck denote the number of critical
points of f with Morse index k which are in the interior of M . Put µk :=
ck + ck,k(Na) + ck,k−1(Nr) and βk = dimHdr(M,Nr). The above discussion
about cylindrical operators and boundary properties of eigenfunctions of the
harmonic oscillator can be applied to the operator Lk

s appeared in relation (3.9)
to deduce the following Morse inequalities

µk − µk−1 + · · ·+ (−1)kµ0 ≥ βk − βk−1 + · · ·+ (−1)kβ0.

As before the equality holds for k = n.

References

[1] M. F. Atiyah, V. K. Patodi, and I. M. Singer, Spectral asymmetry and Riemannian
geometry. I, Math. Proc. Cambridge Philos. Soc. 77 (1975), 43–69.

[2] N. Berline, E. Getzler, and M. Vergne, Heat Kernels and Dirac Operators, Grundlehren
der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences],
298. Springer-Verlag, Berlin, 1992.

[3] B. Booß-Bavnbek and K. P. Wojciechowski, Elliptic Boundary Problems for Dirac Op-
erators, Mathematics: Theory & Applications. Birkhäuser Boston Inc., Boston, MA,
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