DOI QR코드

DOI QR Code

자갈이 포함된 모래의 비배수 전단거동

Undrained Shear Behavior of Sand with Dispersed Gravels

  • 박성식 (경북대학교 공과대학 건축토목공학부 토목공학전공) ;
  • 김영수 (경북대학교 공과대학 건축토목공학부 토목공학전공) ;
  • 성희영 (경북대학교 공과대학 건축토목공학부)
  • 투고 : 2010.07.15
  • 심사 : 2010.08.23
  • 발행 : 2010.10.31

초록

풍화 잔류토, 토석류, 산사태, 또는 매립 지반에서 자갈과 같은 굵은 입자가 모래나 점토와 같은 작은 입자로 둘러 쌓여져 있는 경우가 있다. 작은 입자 사이에 굵은 입자가 고립된 상태로 존재하는 혼합토의 강도는 흙에서 대부분을 차지하는 작은 입자 즉 모래나 점토의 역학적 특성에 따라 좌우되지만 흩어져 있는 굵은 입자인 자갈의 크기, 모양, 함유량 등에 의해 영향을 받는 경우도 있다. 본 연구에서는 이와 같이 모래 지반 내에 흩어져 있는 소량의 자갈이 모래의 전단강도에 미치는 영향을 연구하였다. 습윤 상태의 낙동강모래를 이용하여 각층 높이의 중간부분에 굵은 자갈 또는 작은 자갈을 넣고 다음 층을 쌓아 다지는 방식으로 5층으로 된 조밀한 공시체를 제작하였다. 각층 높이의 중간부분에 들어간 굵은 자갈과 작은 자갈의 중량비를 0, 3, 9, 14%로 달리하면서 다양한 공시체를 제작하여 압밀시킨 다음 비배수 삼축압축시험을 실시하였다. 혼합되는 굵은 자갈의 중량비(개수)가 증가할수록 자갈을 포함한 낙동강모래의 최대축차응력은 최대 38%까지 감소하였으며, 이와 같은 굵은 자갈로 인한 최대축차응력 감소는 구속압이 증가할수록 줄어드는 경향을 보였다. 하지만 공시체 내에 포함된 작은 자갈의 중량비가 증가할수록 최대축차응력은 오히려 증가하였으며, 자갈의 중량비가 3, 9%로 작을 경우 최대축차응력의 증가는 미미하였으나 14%로 증가할 경우에는 최대축차응력이 최대 34%까지 증가하였다.

In residual soils, large particles such as rock fragments or gravel are surrounded by sand or clay. The strength of such granular mixtures can be controlled by the concentration of fine or coarse grains. The percentage by weight, size or shape of gravel in the mixture that can control the strength of the mixture has not been clearly determined for various granular mixtures. In this study, the effect of dispersed gravels on the shear characteristics of sand was evaluated. Large and small gravels were inserted in the middle of each layer with moist Nakdong River sand and compacted into a cylindrical sample with five equal layers. Embedded gravel ratios by weight were 0, 3, 9, and 14%. After consolidation, a series of undrained triaxial compression tests was performed on Nakdong River sand with dispersed gravels. Maximum deviator stresses of the Nakdong River sand with large gravels decrease up to 38% as a percentage of embedded gravels increases. Such strength degradation decreases as a confining pressure increases. The maximum deviator stress increases as the percentage by weight of small gravel increases; at 3 or 9% of gravel weight it slightly increases but at 14% of gravel weight it increases up to 34%.

키워드

참고문헌

  1. 김방식(2005) 자갈-모래 혼합토의 액상화 거동. 박사학위논문, 인하대학교.
  2. 김우순(2009) 상태정수에 따른 등방압밀 자갈-모래 혼합토의 비배수 거동. 석사학위논문, 인하대학교.
  3. ASTM D3080-98 (2003) Annual book of ASTM Standards, Section four, Construction, Volume 04.08.
  4. ASTM D4253 - 00 (2006) Standard Test Methods for Maximum Index Density and Unit Weight of Soils Using a Vibratory Table.
  5. ASTM D4254 - 00(2006) Standard Test Methods for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density.
  6. Chik, Z. and Vallejo, L.E. (2005) Characterization of the angle of repose of binary granular materials. Canadian Geotechnical Journal, Vol. 42, pp. 683-692. https://doi.org/10.1139/t04-118
  7. Doddiah, D., Bhat, H.S., Somasekhar, P.V., Sosalegowda, H.B., and Ranganath, K.N. (1969) Shear characteristics of soil-gravel mixtures. Journal of the Indian National Society of Soil Mechanics and Foundation Engineering, Vol. 8, No. 1, pp. 57-66.
  8. Fragaszy, R.J., Su, W., and Siddiqi, F. H. (1990) Effects of oversize particles on the density of clean granular soils. Geotechnical Testing Journal, Vol. 13, No. 2, pp. 106-114. https://doi.org/10.1520/GTJ10701J
  9. Fragaszy, R.J., Su, J., Siddiqi, F.H., and Ho, C.L. (1992) Modeling strength of sandy gravel. Journal of Geotechnical Engineering, Vol. 118, No. 6, pp. 920-935. https://doi.org/10.1061/(ASCE)0733-9410(1992)118:6(920)
  10. Goodman, R.E. (1993) Engineering Geology: Construction in Engineering.
  11. Gutierrez, J.J., Vallejo, L.E., and Garcia, C.I. (2009) The hydraulic conductivity of sands with dispersed oversized particles. Proceedings of the 17th International Conference on Soil Mechanics and Foundation Engineering, pp. 163-166.
  12. Holtz, W.G. and Gibbs, H.J. (1956) Triaxial shear tests on pervious gravelly soils. Journal of the Soil Mechanics and Foundation Division, Vol. 82, No. SM 1, pp. 1-22.
  13. Ishihara, K. (1993) The 33rd Rankine Lecture, Liquefaction and flow failure during earthquakes, Geotechnique, Vol. 43, No. 3, pp. 351-415. https://doi.org/10.1680/geot.1993.43.3.351
  14. Kanit, T., Forest, S., Galliet, I., Mounoury, V., and Jeulin D. (2003) Determination of the size of the representative volume element for random composites: statistical and numerical approach. International Journal of Solids and Structures, Vol. 40, pp. 3647-3679. https://doi.org/10.1016/S0020-7683(03)00143-4
  15. Marsal, R. J. and Fuentes de la Rosa, A. (1976) Mechanical properties of rockfill-soil mixtures. In Transactions of the 12th International Congress on Large Dams, Vol. 1, pp. 179-209.
  16. Schultze, E. (1957) Large-scale shear tests. Proceedings of the Fourth International Conference on Soil Mechanics and Foundation Engineering, Vol. 1, 193-199.
  17. Vallejo, L.E. (2001) Interpretation of the limits in shear strength in binary granular mixtures. Canadian Geotechnical Journal, Vol. 38, pp. 1097-1104. https://doi.org/10.1139/t01-029
  18. Vallejo, L.E. and Lobo-Guerrero, S. (2005) The elastic moduli of clays with dispersed oversized particles. Engineering Geology, Vol. 78, pp. 163-171. https://doi.org/10.1016/j.enggeo.2004.12.003
  19. Vallejo, L. E., and Mawby, R. (2000) Porosity influence on the shear strength of granular material-clay mixtures. Engineering Geology, Vol. 58, pp. 125-136. https://doi.org/10.1016/S0013-7952(00)00051-X
  20. Vasileva, A.A., Mikheev, V.V., and Lobanova, G.L. (1971) How the strength of gravelly soils depend on the type of state of the sand filling the pores, Soil Mechanics and Foundation Engineering, Vol. 8, No. 3, pp. 167-171. https://doi.org/10.1007/BF01705108
  21. Weissman, S., Harvey, J., Sackman, J., and Long, F. (1999) Selection of laboratory test specimen dimension for permanent deformation of asphalt concrete pavements, Transportation Research Record 1681, pp. 113-120. https://doi.org/10.3141/1681-14
  22. Zeman, J. and Sejnoha, M. (2007) From random microstructures to representative volume elements. Modeling and Simulation in Materials Science and Engineering, Vol. 15, pp. S325-S335. https://doi.org/10.1088/0965-0393/15/4/S01