DOI QR코드

DOI QR Code

Analysis of Soil Resistance on Laterally Loaded Piles Considering Soil Continuity

지반의 연속성을 고려한 말뚝의 수평지반저항력 산정

  • 김영호 (연세대학교 사회환경시스템공학부) ;
  • 정상섬 (연세대학교 사회환경시스템공학부)
  • Received : 2010.01.05
  • Accepted : 2010.06.30
  • Published : 2010.08.31

Abstract

The load distribution and deflection of large diameter piles are investigated by lateral load transfer method (p-y curve). The emphasis is on the effect of the soil continuity in a laterally loaded pile using 3D finite element analysis. A framework for determining a p-y curve is calculated based on the surrounding soil stress. The parametric studies that take into account the soil continuity are also presented in this paper. Through comparisons with results of field load tests, it is found that the prediction by the present approach is in good agreement with the general trend observed by in situ measurements and thus, represents a significant improvement in the prediction of a laterally loaded pile behavior. Therefore, a present study considering the soil continuity would be more economical pile design.

대구경 말뚝의 수평 하중전이 거동 및 변형 해석을 위해 수평하중전이 해석법(p-y 곡선법)이 널리 사용되고 있다. 본 연구에서는, 기존 p-y 해석법의 단점을 보완하기 위하여, 지반의 연속성을 고려한 수평 지반저항력 산정법을 고찰하였으며, 3차원 유한요소 해석을 이용하여 수평하중을 받는 말뚝의 연속체 모델링을 수행하였다. 이를 바탕으로 심도별 말뚝 주변부 발생응력을 바탕으로 하중전이 함수를 산정하고 지반 연속성에 영향을 주는 인자들을 매개변수 연구를 통해 검증하였다. 현장재하시험 사례와의 비교분석 결과, 말뚝 주변부 지반응력을 이용한 유한요소 해석방법은 기존 p-y 곡선에 비해 수평하중을 받는 말뚝의 하중전이 거동을 보다 정확히 예측할 수 있음을 확인하였다. 따라서, 수평하중을 받는 대구경, 대심도 말뚝 설계 시, 신뢰성 있는 수평하중전이 함수의 산정이 중요하며, 지반연속성을 고려하면 보다 경제적인 설계를 할 수 있음을 알 수 있었다.

Keywords

References

  1. 김영호, 정상섬, 김정환, 이양구(2007) 해상 현장타설말뚝의 p-y 곡선 산정을 통한 횡방향 상대 강성 분석, 한국지반공학회논문집, 한국지반공학회, 제23권, 제6호, pp. 37-51.
  2. Ashour, M., Norris, G., and Pilling, P. (1998) Lateral loading of a pile in layered soil using the strain wedge model. J. Geotech. Geoenvir. Eng., ASCE, Vol. 124, No. 4, pp. 303-315. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:4(303)
  3. Briaud, J.L., Smith, T.D., and Meyer B.J. (1983) Using the pressuremeter curve to design laterally loaded piles. Proc., 15th Offshore Technology Con!, Houston, Paper 4501, pp. 495-502.
  4. Brinch Hansen, J. (1961) The ultimate resistance of rigid piles against transversal forces. Bulletin No. 12, Danish Geotechnical Institute, Copenhagen, Denmark, pp. 5-9.
  5. Brown, D.A. and Shie, C.F. (1991) Some numerical experiments with a three-dimensional finite element model of laterally loaded piles. Computers and Geotechnics, Vol. 12, pp. 149-162. https://doi.org/10.1016/0266-352X(91)90004-Y
  6. Broms, B. (1964) Lateral resistance of piles in cohesiveness soils. J. Soil Mechanics and Foundation Div., ASCE, Vol. 90, No. 4, pp. 27-63.
  7. Fan, C.C. and Long, J.H. (2005) Assessment of existing methods for predicting soil response of laterally loaded piles in sand. Computers and Geotechnics, Vol. 32, pp. 274-289. https://doi.org/10.1016/j.compgeo.2005.02.004
  8. Jeong, S.S. and Seo, D.H. (2004) Analysis of tieback walls using proposed p-y curves for coupled soil springs. Computers and Geotechnics, Vol. 31, pp. 443-456. https://doi.org/10.1016/j.compgeo.2004.05.003
  9. Jeong, S.S., Seo, D.H., and Kim, Y.H. (2009) Numerical analysis of passive pile groups in offshore soft deposits. Computers and Geotechnics, Vol. 36, pp. 1164-1175. https://doi.org/10.1016/j.compgeo.2009.05.003
  10. Jeremic, B. and Yang, Z. (2002) Numerical analysis of pile behavior under lateral loads in layered elastic-plastic soils. International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 26, pp. 1385-1406. https://doi.org/10.1002/nag.250
  11. Kim, Y.H., Jeong, S.S., and Won, J.O. (2009) Effect of lateral rigidity of offshore piles using proposed p-y curves in marine clay. J Marine Georesources and Geotechnology, Vol. 27, No. 1, pp. 53-77. https://doi.org/10.1080/10641190802625551
  12. Liang, R., Shatnawi, E. S., and Nusairat, J. (2007), Hyperbolic p-y criterion for cohesive soils. Jordan J. of Civil Eng., Vol. 1, No. 1, pp. 38-58.
  13. Matlock, H. (1970) Correlations for design of laterally loaded piles in soft clay. Paper No. OTC 1204, Proceedings of Second Annual Offshore Technology Conference, Houston, Texas, Vol. 1, pp. 577-594.
  14. O'Neill, M.W. and Gazioglu. S.M. (1984) Evaluation of P-Y relationships in cohesive soils. Proceedings of a Analysis and Design of Pile Foundations, ASCE geotechnical Engineering Division, pp. 192-213.
  15. PLAXIS 3D Foundation (2008) PLAXIS 3D Foundation user Manual, Version 2.0, Brinkgreve, R.B. and Swolfs, W. M., PLAXIS Inc.
  16. Randolph, M.F. (1981) The response of flexible piles to lateral loading. Geotechnique, Vol. 31 , No. 2, pp. 247-259. https://doi.org/10.1680/geot.1981.31.2.247
  17. Reese, L. C., Cox, W. R., and Koop, F. D. (1975) Field testing and analysis of laterally loaded piles in stiff clay. Proceedings, Offshore Technology Conference, Houston, Texas, Paper No. 2312, pp. 671-690.
  18. Shatnawi, E. S. (2008) Development of p-y Criterion for Anisotropic Rock and Cohesive Intermediate Geomaterials, PhD thesis, University of Akron, Ohio.
  19. Wallace, J.W., Fox, P.J., and Stewart J.P. (2002) Cyclic large deflection testing of shaft bridges part 11: Analytical studies. Rep. No. 59A0183, California Dept. of Transportation. California.
  20. Won, J.O., Ahn, S.Y., Jeong, S.S., Lee, J.H., and Jang, S.Y. (2006) Nonlinear three-dimensional analysis of pile group supported columns considering pile cap flexibility. Computers and Geotechnics, Vol. 33, pp. 355-370. https://doi.org/10.1016/j.compgeo.2006.07.007
  21. Yang, K. (2006), Analysis of Laterally Loaded Drilled Shafts in Rock, Ph.D. thesis, University of Akron, Ohio.