DOI QR코드

DOI QR Code

Stable Channel Analysis and Design for the Abandoned Channel Restoration Site of Cheongmi Stream using Regime Theory

평형하상 이론을 이용한 청미천 구하도 복원 대상구간의 안정하도 평가 및 설계

  • 지운 (명지대학교 공과대학 토목환경공학과) ;
  • ;
  • 강준구 (한국건설기술연구원) ;
  • 여홍구 (한국건설기술연구원)
  • Received : 2010.03.10
  • Accepted : 2010.04.19
  • Published : 2010.06.30

Abstract

River restoration or rehabilitation should be conducted in a way to maximize the channel stability with natural river configuration close to the equilibrium condition considering divers aspects of fluvial hydraulics, erosion and sedimentation, fluvial geomorphology, and ecological environment and to minimize the maintenance work. Therefore, the channel stability evaluation for present condition based on the equilibrium channel concept should be preceded for the river restoration project. Methods for equilibrium channel theory have generally been developed following either analytical regime theory or empirical regime theory. The main purpose of this paper is to evaluate the stability of present channel condition for the section of abandoned channel restoration in Cheongmi Stream using the Stable channel Analytical Model (SAM) and equilibrium hydraulic geometry equations. The results of analytical and empirical regime theories should provide fundamental and essential information to design the stable channel geometry. As a calculation result of Copeland's method for the study reach, the equilibrium channel has a narrower channel width, deeper water depth, and more gentle slope than the present channel geometry. As results of equilibrium hydraulic geometry equations, predicted equilibrium widths are less than the channel width in the field. It is represented that the current bed slope must be gentle to reach the equilibrium condition according to the results of Julien and Wargadalam method.

하천 복원 설계는 하천 수리 및 유사 수리학적, 하천 지형 및 형태학적, 그리고 생태환경적인 측면까지 모두 고려하여 인위적이지 않고 자연 상태에 가까운 평형하천의 형태를 갖도록 안정성을 최대화하면서 유지 관리 작업은 최소화하는 방향으로 수행해야 한다. 이를 위해서는 우선 평형하상 이론을 고려한 복원 하천 및 하도의 안정성에 대한 평가가 선행되어야 한다. 이러한 평형하상 이론 방법은 일반적으로 크게 해석적 방법 또는 경험적 방법의 형태로 발전되어 왔다. 본 논문에서는 청미천 구하도 복원이 실시되는 구간에 대해서 해석적 방법의 대표적인 Copeland 방법을 기본 모듈로 채택하고 있는 SAM 프로그램을 이용하여 안정하도를 설계하였으며 경험적 방법의 평형공식(하류하천 수리기하 공식)들을 이용하여 현재하도의 안정성을 평가하고 분석하였다. 해석적, 경험적 방법들로 분석된 결과들은 구하도 구간의 하도 형태 설계를 위한 자료로 활용하기 위한 것이다. Copeland 방법을 이용한 분석 결과, 청미천 대상구간의 안정하도는 현재하도보다 폭이 좁고 수심이 큰 그리고 경사가 완만한 하도인 것으로 나타났다. 또한 수리기하공식을 이용하여 복원 하천의 하폭 및 경사를 예측한 결과, 예측된 평형하도의 하폭은 현재 하도의 하폭보다 폭이 좁은 것으로 예측되었으며, 특히 Julien and Wargadalam 방법으로 예측한 결과 현재하도가 평형상태에 도달하기 위해서는 경사가 현재상태보다 더 완만해져야 되는 것으로 나타났다.

Keywords

References

  1. 국토해양부(2009) 홍수터 보전/복원 기술. 연구보고서, 한국건설기술연구원.
  2. 지 운, 강준구, 여운광, 한승원 (2009) 청미천 구하도 복원 설계를 위한 하도형성유량 산정. 한국수자원학회논문집, 한국수자원학회, Vol. 42, No. 12, pp. 1113-1124 https://doi.org/10.3741/JKWRA.2009.42.12.1113
  3. Abou-Seida, M.M. and Saleh, M. (1987) Design of stable alluvial channels. Jounal of Hydraulic Rsearrch, Vol. 25, No. 4, pp. 433-446. https://doi.org/10.1080/00221688709499261
  4. Blench, T. (1957) Regime behavior of canals and rivers. Butterworths Scientifìc Publications, London.
  5. Brownlie, W. R. (1981) Prediction of flow depth and sediment transport in open channels. California Institute od Technology, Pasedena, California. Report No. KH-R-43A, November, pp. 230.
  6. Brownlie, W. R. (1983) Flow depth in sand-bed channels. Journal of Hydraulic Engineering, American Society of Civil Engineers., Vol. 109, No. 7, pp. 959-990. https://doi.org/10.1061/(ASCE)0733-9429(1983)109:7(959)
  7. Brunner, G.W. (2008) HEC-RAS, River Analysis System Hydraulic Reference Manual. United States Army Corps of Engineers, Hydrologic Engineering Center (HEC), Davis, California.
  8. Chadwick, A. and Morfett, J. (1993) Hydraulics in Civil and Environmental Engineering. Second Edition. E and FN Spon, an imprint of Chapman and Hall, London, pp. 557
  9. Chang, H.H. (1980) Stable aullvial canal design. journal of the hydraulics division, Proceedings of the American Society of Civil Engineers., 106(HY5), pp. 873-891.
  10. Chang, H.H. (1988) Fluvial Processes in River Engineering. Wiley Interscience, New York, pp. 429.
  11. Chow, V.T (1959) Open Channel Hydraulics. New York, NY: McGraw-Hill Book Company, lnc.
  12. Copeland, R.R. (1994) Application of channel stability methods - Case studies. Technical Report HL-94-11, September. United States Army Corps of Engineers, Waterways Experiment Station, Yicksburg, Mississippi.
  13. Ferguson, R.I. (1986) Hydraulics and hydraulic geometly. Progress in Physical Geography, Vol. 10, pp. 1-31. https://doi.org/10.1177/030913338601000101
  14. Graf, W.H. (1971) Hydraulics of Sediment Transport. McGraw Hill, New York, pp. 513.
  15. Henderson, F.M. (1963) Stability of alluvial channels. Transactions of the American Society of Civil Engineers, Vol. 128, Paper 3440, pp. 657-686.
  16. Henderson, F.M. (1966) Open Channel Flow. Macmillan, New York, pp. 522.
  17. Hey, R.D. (1988) Mathematical models of channel morphology. In Anderson, M.G. (Ed.), Modelling Geomorphological Systems Wiley, Chichester, pp. 99-126.
  18. Hey, R.D. (1997) Stable river morphology. In: Thorne, C.R., Hey, R.D. and Newson, M.D. (Eds.), Applied FluviaI Geomorphology for River Engineering and Management. Wiley, Chichester, pp. 223-236.
  19. Jullien, P.Y. and Wargadalam, J. (1995) Alluvial channel geometry: theory and applications. Journal of Hydraulic Engineering., Vol. 121, No. 4, pp. 312-325 https://doi.org/10.1061/(ASCE)0733-9429(1995)121:4(312)
  20. Klaassen, G.J., and Yermeer, K. (1988) Channel characteristics of the braiding jamuna river. bangladesh. International Cofererence on River Regime, 18-20 May 1988, W. R. White, ed., Hydraulic Research Ltd., Willingford, UK, pp. 173-189.
  21. Lane, E.W. (1955) Design of stable channels. Transactions of the American Society of Civil Engineers, Vol. 120, pp. 1234-1279.
  22. Langbein, W.B. (1964) Geometry of river chalnnels. Journal of the Hydraulics Division, Proceedings of the American Society of Civil Engineers, 90(HY2), pp. 301-312.
  23. Leopold, L.B. and Maddock, T. (1953) The Hydraulic Geomeny of Stream Channels and Some Physiographic Implications. USGS Professional Paper 252, USGS, Washington, D.C.
  24. Neill, C.R. (1982) Hydraulic design of stable flood control channels: I - Selective overview of state of art. Northwest Hydraulics Consultants Ltd., Report prepared for United States Army Corps of Engineers, Waterways Experiment Station, Vicksburg, Mississippi
  25. Nouh, M. (1988) Regime Channels of an Extreamely Arid Zone. lnternational Conference of River Regime, 18-20 May 1988, W.R. White, ed., Hydraulic Research Ltd., Willingford, UK, pp. 55-66.
  26. Raudkivi, A.J. (1990) Loose Boundmy Hydraulics. Third Edition. Pergamon, Oxford, pp. 400.
  27. Richards, K.S. (1982) Rivers: Form and Process in AlIuvial Channels. Methuen, London, pp. 361.
  28. Scott, S.H (2006) Application of the SAM Computer Program for Truckee River Stable Channel Analysis. U.S. Army Corps of Engineers, Coastal and Hydraulics Laboratory, ERDC/CHL CHETN-VII-7.
  29. Shen, H.W. (1971) Stability of alluvial channels. In: Shen, H.W. (Ed.), River Mechanics. Volume 2, Fort Collins, Colorado, Chapter 16.
  30. Simons, D.B. and Albeltson, M.L. (1963) Uniform water conveyance channels in alluvial material. Transactions of the American Society of Civil Engineers., Vol. 128, pp. 65-107.
  31. Simons, D.B. and Senturk, F. (1977) Sediment transport technology. Water Resources Publication, Littleton, Colorado, pp. 897.
  32. Soar, P.J. and Thorne, C. R. (2001) Channel Restoration Design for Meandering Rivers. ERDC/CHL CR-01-1, U.S. Army Corops of Engineers. Coastal and Hydraulics Laboratory.
  33. USACE (1994) Engineering and Design: Chnnel stability assessment for flood control channels. Engineering Manual 1110-2-1418, CECW-EHD, United States Department of the Army, Washington, D.C.
  34. Vanoni, V.A. (Ed), (1975) Sedimentation Engineering. Manual 54, American Society of Civil Engineers., New York, pp. 745.
  35. Wargadalam, J. (1993) Hydraulic Geometry of alluvial Channels. Ph.D. Dissertation, Colorado State University, Fort Collins, CO.
  36. White, W.R., Bettess, R. and Paris, E. (1982) Analytical approach to river regime. Journal of the Hydraulics Division., Proceeding of the American Society of Civil Engineers, 108(HY10), pp.1179-1193.