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CONCAVITY OF THE CONDITIONAL MEAN

SOJOURN TIME IN THE PROCESSOR-SHARING

QUEUE WITH BATCH ARRIVALS

Jeongsim Kim

Abstract. For an M/G/1 processor-sharing queue with batch arrivals,
Avrachenkov et al. [1] conjectured that the conditional mean sojourn

time is concave. However, Kim and Kim [5] showed that this conjecture
is not true in general. In this paper, we show that this conjecture is true
if the service times have a hyperexponential distribution.

1. Introduction

The processor-sharing queues have been of considerable interest and are
useful in modeling some computer and communication systems. Under the
processor-sharing service discipline, each customer receives an equal share of
the processor, i.e., when n customers are present in the system, each customer
receives service at a rate 1

n .
The processor-sharing discipline was introduced by Kleinrock [6] and has

been studied for a few decades. Many researchers have investigated for various
processor-sharing queues with single arrivals. However, relatively little discus-
sion has been paid to the processor-sharing queue with batch arrivals in the
literature. Batch arrivals are often used to model the burstiness in the arrival
process. An application of the processor-sharing queue with batch arrivals can
be found in Avrachenkov et al. [1].

Kleinrock et al. [7] first studied the M/G/1 processor-sharing queue with
batch arrivals and showed that the derivative of the mean sojourn time con-
ditioned on the required service time (conditional mean sojourn time) satisfies
an integral equation. This equation cannot be easily solved. They solved this
equation for a special case of service time distributions, which is only slightly
more general than exponential distributions. Bansal [2], using Kleinrock’s in-
tegral equation, obtained the Laplace-Stieltjes transform of the conditional
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mean sojourn time, when the service times of customers have a generalized hy-
perexponential distribution and more generally for distributions with rational
Laplace transforms. He also obtained the unconditional mean sojourn time
for both of those special cases. Feng and Misra [3] provided bounds for the
conditional mean sojourn time. Avrachenkov et al. [1] proved the existence
and uniqueness of a solution to Kleinrock’s integral equation. Furthermore,
they provided asymptotical analysis as well as tight bounds for the conditional
and unconditional mean sojourn times. Rege and Sengupta [8] found the so-
journ time distribution for a tagged customer, given the service times of all
customers in the system. They also obtained the sojourn time distribution at
an arrival instant for a customer whose service requirement is known, only in
two special cases: one is when the service times have exponential distribution
and the other is when the batch size is 1. Recently, Kim and Kim [4] obtained
the moments of the queue-length and the sojourn time, when the service times
have a phase-type distribution.

For the M/G/1 processor-sharing queue with batch arrivals, Avrachenkov
et al. [1] conjectured that the conditional mean sojourn time is concave. How-
ever, Kim and Kim [5] showed that this conjecture is not true in general. In
this paper, we show that this conjecture is true if the service times have a
hyperexponential distribution.

2. Main result

We consider an M/HE/1 processor-sharing queueing system with batch ar-
rivals. This kind of system is usually denoted by MX/HE/1 PS queue. The
customers arrive in batches of random size B. We assume that the batch size B
has a finite second moment. The batches arrive according to a Poisson process
with rate λ. The service times have a hyperexponential distribution of order
K with the following distribution function:

(1) F (x) = 1−
K∑
i=1

αie
−µix,

where µi > 0, αi > 0 for all i and
∑K

i=1 αi = 1. We note that the hyper-
exponential distribution of order K consists of K exponential “phases”. Let

α = (α1, . . . , αK). The offered load ρ is ρ ≡ λE(B)
∑K

i=1
αi

µi
and is assumed to

be less than 1. We also denote by ρi, i = 1, . . . ,K, the offered load by phase i,
i.e., ρi ≡ λE(B)αi

µi
.

Let us denote by T (x) the conditional mean sojourn time for a customer
with service time x. Our main result is the next theorem, which asserts that
the conditional mean sojourn time T (x) is a concave function, when the service
times have a hyperexponential distribution. The proof is deferred to the next
section.
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Theorem 1. We consider the MX/HE/1 PS queue with service time distribu-
tion as (1). Then the conditional mean sojourn time T (x) satisfies T ′′(x) ≤ 0.
Hence T (x) is concave in x.

As a corollary of the theorem above, we obtain a result on the slowdown,
which is defined as the sojourn time divided by the service time. Let S(x) be
the slowdown of the customer with service time x.

Corollary 1. For the MX/HE/1 PS queue with service time distribution as
(1), the mean slowdown E(S(x)) is nonincreasing in x.

Proof. Since E(S(x)) = T (x)
x ,

d

dx
E(S(x)) =

T ′(x)x− T (x)

x2
.

By Theorem 1, T ′(x) is nonincreasing, and so

T (x) =

∫ x

0

T ′(y)dy ≥
∫ x

0

T ′(x)dy = T ′(x)x.

Therefore, d
dxE(S(x)) ≤ 0. □

3. Proof of main result

In this section we prove Theorem 1. For the convenience of the reader we
repeat an expression for the conditional mean sojourn time, together with its
first and second derivatives, from Kim and Kim [5]. We also give an expression
for the mean number of customers at steady state. Denote by Ni, i = 1, . . . ,K,
the number of customers in phase i service, at steady state.

Proposition 1 ([5]). For the MX/HE/1 PS queue with service time distribu-
tion (1), T (x), T ′(x) and T ′′(x) are given as follows:

T (x) =
x

1− ρ
+

(
(E(N1), . . . ,E(NK))− 1

1− ρ
(ρ1, . . . , ρK) +

E(B(B − 1))

E(B)
α

)
×
(
diag(

1

µ1
, . . . ,

1

µK
) +

1

1− ρ
(
1

µ1
, . . . ,

1

µK
)⊤(ρ1, . . . , ρK)

)(
1− eÃx1

)
,

T ′(x) =
1

1− ρ
+

(
(E(N1), . . . ,E(NK))− 1

1− ρ
(ρ1, . . . , ρK) +

E(B(B − 1))

E(B)
α

)
eÃx1,

(2) T ′′(x)=

(
(E(N1), . . . ,E(NK))− 1

1− ρ
(ρ1, . . . , ρK) +

E(B(B − 1))

E(B)
α

)
eÃxÃ1,

where Ã = λE(B)1α− diag(µ1, . . . , µK).

Throughout the paper, 1 denotes a column vector with all its components
equal to one, the superscript ⊤ denotes the transpose of a vector or a matrix.

The mean number of customers (E(N1), . . . ,E(NK)) is expressed as the fol-
lowing proposition, which is immediate from equations (6), (8) and (9) in Kim
and Kim [4].
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Proposition 2. For the MX/HE/1 PS queue with service time distribution
(1), we have

(E(N1), . . . ,E(NK)) = 1⊤R̃+ (ρ1, . . . , ρK),

where R̃ is the solution of

(3)
Ã⊤R̃+ R̃Ã = − λE(B)

(
α⊤(ρ1, . . . , ρK) + (ρ1, . . . , ρK)⊤α

)
− λE(B(B − 1))α⊤α

with Ã given in Proposition 1.

Remark. It is known that (3) has a unique solution for R̃ (See Kim and Kim
[4]).

The following lemma provides an expression for (E(N1), . . . ,E(NK)) in the
case when α = ( 1

K , . . . , 1
K ), i.e., α = 1

K1⊤.

Lemma 1. If α = 1
K1⊤, then there are cn ≥ 0, n = 0, 1, 2 . . ., such that

(E(N1), . . . ,E(NK)) =
1

1− ρ
(ρ1, . . . , ρK) +

∞∑
n=0

cn1
⊤Cn,

where C = λE(B)
K 11⊤ − diag(µ1, . . . , µK) + µ∗I with µ∗ = max{µ1, . . . , µK}.

Proof. According to Proposition 2, we have

(E(N1), . . . ,E(NK)) = 1⊤R+ (ρ1, . . . , ρK),

where R is the solution of

AR+RA = − λE(B)

K

(
1(ρ1, . . . , ρK) + (ρ1, . . . , ρK)⊤1⊤)

− λE(B(B − 1))

K2
11⊤,

with A = λE(B)
K 11⊤ − diag(µ1, . . . , µK). Note that the matrix A is symmetric.

The matrix R can be decomposed as

R = U + V,

where U and V are solutions of

(4)
AU + UA = −λE(B)

K

(
1(ρ1, . . . , ρK) + (ρ1, . . . , ρK)⊤1⊤) ,

AV + V A = −λE(B(B − 1))

K2
11⊤,

respectively. Thus

(5) (E(N1), . . . ,E(NK)) = 1⊤U + 1⊤V + (ρ1, . . . , ρK).

For a moment, we consider an M/HE/1 PS queue with arrival rate λE(B)

and service time distribution F (x) = 1 −
∑K

i=1
1
K e−µix. Let E(Nsingle

i ), i =
1, . . . ,K, denote the mean number of customers in phase i service for this
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queueing system, at steady state. Then, by the equations (6) and (9) in Kim
and Kim [4],

(E(Nsingle
1 ), . . . ,E(Nsingle

K )) = 1⊤U + (ρ1, . . . , ρK).

It is well-known that

(E(Nsingle
1 ), . . . ,E(Nsingle

K )) =
1

1− ρ
(ρ1, . . . , ρK).

Therefore

1⊤U + (ρ1, . . . , ρK) =
1

1− ρ
(ρ1, . . . , ρK).

Substituting the above into (5) leads to

(6) (E(N1), . . . ,E(NK)) =
1

1− ρ
(ρ1, . . . , ρK) + 1⊤V.

Now we show that, for each n = 0, 1, . . ., there are cni such that

(7) 1⊤CnV =
∞∑
i=0

cni1
⊤Ci.

Since A = C − µ∗I, (4) becomes

V =
1

2µ∗

(
CV + V C +

λE(B(B − 1))

K2
11⊤

)
.

Define V (j), j = 0, 1, . . ., as

V (0) = O,

V (j+1) =
1

2µ∗

(
CV (j) + V (j)C +

λE(B(B − 1))

K2
11⊤

)
, j = 0, 1, . . . .

By induction on j, it can be shown that for every n = 0, 1, . . ., there are c
(j)
ni

such that

1⊤CnV (j) =
∞∑
i=0

c
(j)
ni 1

⊤Ci.

Furthermore, c
(j)
ni can be chosen so that c

(j)
ni is nondecreasing in j. Let

lim
j→∞

c
(j)
ni = cni.

Since V (j) converges to V , the assertion (7) follows. Finally, substituting the
special case n = 0 of (7) into (6) completes the proof. □

If α = 1
K1⊤, then, by (2),

T ′′(x) =

(
(E(N1), . . . ,E(NK))− 1

1− ρ
(ρ1, . . . , ρK) +

E(B(B − 1))

KE(B)
1⊤

)
eAxA1.
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Therefore, by Lemma 1, we have

(8) T ′′(x) =
∞∑

n=0

cn1
⊤CneAxA1+

E(B(B − 1))

KE(B)
1⊤eAxA1.

Finally, to prove Theorem 1, we need one more lemma.

Lemma 2. If α = 1
K1⊤, then 1⊤CneAxA1 ≤ 0 for all x ≥ 0 and n =

0, 1, . . . , where A = λE(B)
K 11⊤ − diag(µ1, . . . , µK) and C = A+ µ∗I with µ∗ =

max{µ1, . . . , µK}.

Proof. Note that the matrix C is symmetric. Thus C can be decomposed as

C = P⊤diag(σ1, . . . , σK)P,

where P is an orthogonal matrix and σ1, . . . , σK are eigenvalues of C. Since
A = C − µ∗I, we have

A = P⊤diag(σ1 − µ∗, . . . , σK − µ∗)P,

so

eAx = P⊤diag(e(σ1−µ∗)x, . . . , e(σK−µ∗)x)P.

Therefore

(9)

1⊤CneAxA1

= 1⊤P⊤diag
(
σn
1 e

(σ1−µ∗)x(σ1 − µ∗), . . . , σn
Ke(σK−µ∗)x(σK − µ∗)

)
P1

=
K∑
i=1

σn
i e

(σi−µ∗)x(σi − µ∗)((P1)i)
2,

where (w)i indicates the ith component of a vector w.
For any real column vector ξ = (ξ1, . . . , ξK)⊤,

ξ⊤Cξ =
λE(B)

K
ξ⊤11⊤ξ + ξ⊤diag(µ∗ − µ1, . . . , µ

∗ − µK)ξ

=
λE(B)

K
(ξ⊤1)2 +

K∑
i=1

ξ2i (µ
∗ − µi)

≥ 0.

Therefore C is nonnegative definite, which implies that σi, i = 1, . . . ,K, are all
nonnegative. Furthermore, σi < µ∗ for all i = 1, . . . ,K, because C is a positive
matrix and

(
1

µ1
, . . . ,

1

µK
)C = µ∗(

1

µ1
, . . . ,

1

µK
)− (1− ρ)1⊤ < µ∗(

1

µ1
, . . . ,

1

µK
).

Thus we have

0 ≤ σi < µ∗, i = 1, . . . ,K,

which, together with (9), completes the proof. □
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Now we are ready to prove Theorem 1. We break up the proof into 3 steps.

Proof of Theorem 1.

STEP 1. The case that α = 1
K1⊤:

By (8), together with Lemma 2, we have T ′′(x) ≤ 0.

STEP 2. The case that α1, . . . , αK are rational numbers:
The rational numbers α1, . . . , αK are written as

α1 =
p1
r
, . . . , αK =

pK
r
,

where p1, . . . , pK and r are positive integers. Note that p1 + · · ·+ pK = r. We
observe that

F (x) = 1−
r∑

j=1

α̃je
−µ̃jx,

where α̃j =
1
r , j = 1, . . . , r, and

µ̃j =


µ1 if 1 ≤ j ≤ p1,

µ2 if p1 + 1 ≤ j ≤
∑2

i=1 pi,
...

µK if
∑K−1

i=1 pi + 1 ≤ j ≤
∑K

i=1 pi.

Therefore the result follows from Step 1.

STEP 3. The case that α1, . . . , αK are positive real numbers:

Choose positive rational numbers α
(n)
1 , . . . , α

(n)
K , n = 1, 2, . . ., such that

K∑
i=1

α
(n)
i = 1, λE(B)

K∑
i=1

α
(n)
i

µi
< 1,

and limn→∞ α
(n)
1 = α1, . . . , limn→∞ α

(n)
K = αK . For each n, consider the

MX/HE/1 PS queue where the service times have a hyperexponential dis-
tribution

(10) F (n)(x) = 1−
K∑
i=1

α
(n)
i e−µix.

For this MX/HE/1 PS queue with service time distribution (10), let T (n)(x)
be the conditional mean sojourn time for a customer with service time x and

N
(n)
i , i = 1, . . . ,K, the number of customers in phase i service, at steady state.

Then we have that by Step 2,

(11) (T (n))′′(x) ≤ 0
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and by (2),
(12)

(T (n))′′(x)

=
(
(E(N (n)

1 ), . . . ,E(N (n)
K ))− 1

1− ρ(n)
(ρ

(n)
1 , . . . , ρ

(n)
K ) +

E(B(B−1))

E(B)
α(n)

)
eÃ

(n)xÃ(n)1,

where

ρ
(n)
i = λE(B)

α
(n)
i

µi
, i = 1, . . . ,K,

ρ(n) =
K∑
i=1

ρ
(n)
i ,

α(n) = (α
(n)
1 , . . . , α

(n)
K ),

Ã(n) = λE(B)1α(n) − diag(µ1, . . . , µK).

We observe that limn→∞ ρ
(n)
i =ρi, i = 1, . . . ,K, limn→∞ ρ(n)=ρ, limn→∞ α(n)

= α, and limn→∞ Ã(n) = Ã. Furthermore, Proposition 2 implies that

lim
n→∞

EN (n)
i = ENi, i = 1, . . . ,K.

Thus the right-hand side of (12) goes to the right-hand side of (2) as n →
∞. Therefore, by (11), we have T ′′(x) ≤ 0, which completes the proof of
Theorem 1. □
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