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EXPONENTS OF CARTESIAN PRODUCTS OF TWO

DIGRAPHS OF SPECIAL ORDERS

Byeong Moon Kim and Yoomi Rho

Abstract. In this paper, we find the maximum exponent of D × E,
the cartesian product of two digraphs D and E on n, n + 2 vertices,
respectively for an even integer n ≥ 4. We also characterize the extremal

cases.

1. Introduction

Let D = (V,A) be a digraph on n vertices and u, v ∈ V . A u → v walk

is a walk from u to v. We use the notation u
k−→ v when there is a u → v

walk of length k. A digraph D = (V,A) is said primitive if for some k, u
k−→ v

for all pair of vertices u, v of D. In this case, the smallest such k is called
the exponent of D and denoted by exp(D). For a matrix A, the minimal k
such that all the entries of Ak are positive is called the exponent of A. The
exponent of a primitive digraph D is equal to the exponent of its adjacency
matrix. Wielandt [7] found that the maximum exponent of primitive digraphs
on n vertices is Wn = n2 − 2n+ 2 and characterized all the digraphs attaining
this bound, which are called Wielandt graphs. Shao [6] improved this bound to
2n− 2 and Liu, McKay, Wormald and Zhang [4] characterized all the digraphs
attaining this improved bound.

Let D = (VD, AD) and E = (VE , AE) be digraphs such that | VD |= n,
| VE |= m. The cartesian product of D and E is defined as D × E = (V,A)
where V = VD × VE and

A = {((u1, v1), (u2, v2)) | ((u1, u2) ∈ AD and v1 = v2) or

(u1 = u2 and (v1, v2) ∈ AE)}.

R. Lamprey and B. Barnes [3] showed that if D × E is primitive, then

exp(D × E) ≤ (n+m)2 − 4(n+m) + 5.
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The first author, Song and Hwang [2] improved this upper bound as

(1) exp(D × E) ≤ nm− 1.

They also showed that the upper bound in (1) is attained when (m,n) = 1
and characterized all the digraphs D and E which attain it. Moreover, when
m = n, they proved that

exp(D × E) ≤ n2 − n+ 1,

where the equality holds if and only if D and E are isomorphic to a directed
cycle and a Wielandt graph. In this paper, we prove that if D and E are
digraphs on n and n + 2 vertices respectively for an even integer n ≥ 4, and
D × E is primitive, then

exp(D × E) ≤ n2 + n

and we characterize all the extremal digraphs.

2. Main result

From now on we assume that D = (VD, AD) and E = (VE , AE) are digraphs
on n and m vertices, respectively and D×E is primitive. Let l1 be the smallest
length of a directed cycle of D and li be the smallest length of a directed cycle
of D which is not a multiple of (l1, . . . , li−1) for i ≥ 2. Let h be the last index
of such i. Now let lj be the smallest length of a directed cycle of E which is
not a multiple of (l1, . . . , lj−1) for j ≥ h+ 1. Let k be the last index of such j.
For 1 ≤ i ≤ h, let di = (l1, . . . , li) and Ci be a directed cycle of D whose length
is li. For 1 ≤ j ≤ k, let dj = (l1, . . . , lj) and Cj be a directed cycle of E whose

length is lj . Since D × E is primitive, k ≥ 2, dk = 1 and d1

d2
, d2

d3
, . . . , dk−1

dk
≥ 2.

For relatively prime positive numbers l1, . . . , lk, the Frobenius number g(l1,
l2, . . . , lk) is the largest number G such that the equation l1x1+· · ·+lkxk = G is
not solvable for non-negative integers x1, . . . , xk. Classical results on Frobenius
numbers are as follows.

Lemma 1 ([1]). For relatively prime positive numbers l1, . . . , lk,

g(l1, l2, . . . , lk) ≤ l2
d1
d2

+ l3
d2
d3

+ · · ·+ lk
dk−1

dk
− l1 − l2 − · · · − lk,

where di = (l1, . . . , li) for 1 ≤ i ≤ k.

Lemma 2 ([1, 5]). If (a, d) = 1,

g(a, a+ d, a+ 2d, . . . , a+ kd) = (⌊a− 2

k
⌋+ d)a− d.

The followings are from the first author, Song and Hwang [2].

Lemma 3 ([2]). Let D and E be digraphs on n and m vertices, respectively
with h, k, l1, . . . , lk as above. Then

exp(D × E) ≤ g(l1, l2, . . . , lk)− l1 − · · · − lk + (h+ 1)m+ (k − h+ 1)n− 1.
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Lemma 4 ([2]). Let D and E be digraphs on n and m vertices, respectively
with k as above. If k ≥ 3, then

exp(D × E) ≤ nm

2
+m− 1.

Assume k ≥ 4. Let Vk = {0, 1, . . . , k − 1}, (A0)k = {(i, i + 1)|0 ≤ i ≤
k − 2} ∪ {(k − 2, 0)} and B̃k = {(k − 1, 1), (k − 1, 2), (k − 2, 1), (k − 3, 0)} and

Ẽk = (Vk, Ãk) be a digraph where Ãk = (A0)k ∪ B̃k as shown in Figure 1. Also
let Ek be the set of digraphs Ek = (Vk, Ak) such that Ak = (A0)k ∪ Bk where

Bk is a subset of B̃k which contains at least one of (k − 1, 1) or (k − 1, 2).

Then Ẽk ∈ Ek and every element of Ek is a subgraph of Ẽk. Note that Zn =
(Vn, {(i, i+ 1)|0 ≤ i ≤ n− 2} ∪ {(n− 1, 0)}).
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   Figure 1


Lemma 5. Let E = (V,A) be a digraph with m vertices and v, w ∈ V . If the
distance from v to w is m − 1 and l1, l2, . . . , lk are all the lengths of directed
cycles in E, then each length of a path from v to w is represented by m− 1 +
l1x1 + l2x2 + · · ·+ lkxk where x1, x2, . . . , xk are nonnegative integers.

Proof. If there is a path from v to w whose length is not of the form m− 1 +
l1x1+l2x2+· · ·+lkxk, then we can choose a path whose length is minimal among
the paths with this property. Let v = v0 → v1 → · · · → vt = w be such a path.
If there are no repeated vertices among v0, v1, . . . , vt, then t + 1 ≤ m. While
considering that the distance from v to w ism−1, t ≥ m−1 and hence t = m−1.
This is a contradiction. If there are repeated vertices among v0, v1, . . . , vt, then
we can take a pair i, j such that 0 ≤ i < j ≤ t, vi = vj and j − i is minimal
among the pairs with this property. Then vi → vi+1 → · · · → vj = vi is a
directed cycle, j − i = lh for some 1 ≤ h ≤ k. Therefore

v = v0 → v1 → · · · → vi = vj → vj+1 → · · · → vt = w

is a path from v to w with length t − j + i < t. By the minimality of t,
t−j+ i = t− lh = m−1+ l1x1+ l2x2+ · · ·+ lkxk for some nonnegative integers
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x1, x2, . . . , xk and hence t = m− 1+ l1x1+ l2x2+ · · ·+ lh−1xh−1+ lh(xh+1)+
lh+1xh+1 + · · ·+ lkxk. This is a contradiction. Thus the lemma is proved. □

Lemma 6. Let E = (V,A) be a digraph on n + 2 vertices. If Zn × E is
primitive, diam(E) = n+1 and all the lengths of directed cycles in E is n and
n+ 1, then

exp(Zn × E) ≥ n2 + n.

Proof. Since diam(E) = n + 1, there are v, w ∈ V such that the distance

from v to w is n + 1. It is enough to show that (0, v)
n2+n−1

̸−→ (n − 1, w).

Suppose (0, v)
n2+n−1−→ (n − 1, w). Then (0, v) = (u0, v0) −→ (u1, v1) −→

· · · −→ (un2+n−1, vn2+n−1) = (n − 1, w) for some vertices (ui, vi) of Zn × E.
Let

S = {i|1 ≤ i ≤ n2+n−1, ui−1 ̸= ui} and T = {i|1 ≤ i ≤ n2+n−1, vi−1 ̸= vi}

with |S| = s and |T | = t. Then S∪T = {i|1 ≤ i ≤ n2+n−1} and S∩T = ϕ.
Therefore s + t = n2 + n − 1. By Lemma 5, s = n − 1 + nx and t = n + 1 +
ny + (n+ 1)z for some nonnegative integers x, y, z. Thus n2 + n− 1 = s+ t =
n− 1+ nx+n+1+ny+ (n+1)z and hence n2 −n− 1 = n(x+ y) + (n+1)z.
Considering g(n, n+ 1) = n2 − n− 1, this is impossible. □

Theorem 1. If E = (V,A) ∈ En+2, then

exp(Zn × E) ≥ n2 + n.

Proof. Considering that 0
n−→ n → n + 1, diam(E) = n + 1. Zn × En+2 is

primitive as Zn and En+2 contain cycle of length n and n + 1, respectively.
Also En+2 contains directed cycles of length n and n+1 only. Thus by Lemma
6, the theorem is proved. □

Definition 1. Let D = (V,A) be a digraph. Denote AT = {(v, w)|(w, v) ∈ A}.
we call a digraph (V,AT ) the transpose of D and denote it by DT .

Remark 1. exp(D) = exp(DT ).

Theorem 2. Let n ≥ 4 be even. Assume D and E are digraphs on n and n+2
vertices respectively and D × E is primitive. Then

(i)

exp(D × E) ≤ n2 + n

and
(ii) the equality holds if and only if D is isomorphic to Zn, and E or ET

belongs to En+2.

Proof. (i) Take h, k, l1, . . . , lk as above. If k ≥ 3, then from Lemma 4,

exp(D × E) ≤ n(n+ 2)

2
+ n+ 2− 1 < n2 + n.
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Assume that k = 2. From Lemma 1 and Lemma 3,

exp(D × E) ≤ g(l1, l2)− l1 − l2 + 2n+ 2(n+ 2)− 1

≤ l1l2 − 2l1 − 2l2 + 4n+ 3

= (l1 − 2)(l2 − 2) + 4n− 1.

If l1 ≤ n− 1, then exp(D×E) ≤ n2 +n− 1 as l2 ≤ n+2. Assume that l1 = n.
Then D is isomorphic to the directed cycle of length n, which is Zn. Since
(l1, l2) = 1, l2 = n+ 1 and hence

exp(D × E) ≤ (n− 2)(n− 1) + 4n− 1 = n2 + n+ 1.

Assume that C1 is a directed cycle u0 → u1 → · · · → un−1 → u0 in D and C2

is a directed cycle v0 → v1 → · · · → vn → v0 in E. Let (x1, y1) and (x2, y2) be

vertices on D×E such that (x1, y1)
α−1

̸−→ (x2, y2) where α = exp(D×E). Then

there are integers s and t such that x1
s−→ x2, y1

t−→ y2, 0 ≤ s ≤ n − 1 and
0 ≤ t ≤ n+ 1. We consider the following two cases.

Case (i)a: There is a directed cycle of length n+ 2 in E.
Let β ≥ n2+n−1. If y1 ̸= y2, then at least one of y1, y2 belongs to the directed

cycle of length n + 1. We may assume that y1 does and hence y1
n+1−→ y1. By

Lemma 2,

β − s− t ≥ n2 + n− 1− (n− 1)− (n+ 1) = n2 − n− 1

>
n2

2
− 1 = g(n, n+ 1, n+ 2)

and hence there are p, q, r ≥ 0 such that np+ (n+ 1)q + (n+ 2)r = β − s− t.
Then, since

(x1, y1)
np−→ (x1, y1)

s−→ (x2, y1)
(n+1)q−→ (x2, y1)

t−→ (x2, y2)
(n+2)r−→ (x2, y2)

and np+s+(n+1)q+t+(n+2)r = (β−s−t)+s+t = β, (x1, y1)
β−→ (x2, y2).

So exp(D × E) ≤ n2 + n − 1. If y1 = y2, then y1
t1−→ v0

t2−→ y1 for some
0 ≤ t1, t2 ≤ n+ 1 such that t1 + t2 = n+ 2 as E is strongly connected.

β − s− (n+ 2) ≥ n2 + n− 1− (n− 1)− (n+ 2) = n2 − n− 2

>
n2

2
− 1 = g(n, n+ 1, n+ 2)

by Lemma 2. So there are p, q, r ≥ 0 such that np + (n + 1)q + (n + 2)r =
β − s− (n+ 2). Then, since

(x1, y1)
np−→ (x1, y1)

s−→ (x2, y1)
t1−→ (x2, v0)

(n+1)q−→ (x2, v0)

t2−→ (x2, y1)
(n+2)r−→ (x2, y1)

and np+ s+ t1 + (n+ 1)q + t2 + (n+ 2)r = (β − s− (n+ 2)) + s+ n+ 2 = β,

(x1, y1)
β−→ (x2, y1). So exp(D × E) ≤ n2 + n− 1.
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Case (i)b: There is no directed cycle of length n+ 2 in E.
If t ≥ 1, then since there is only one vertex x ∈ VE such that x ̸= vi for

i = 0, 1 . . . , n, there is an intermediate vertex vj such that y1
t1−→ vj

t−t1−→ y2.
Since

n2+n−s− t ≥ n2+n− (n−1)− (n+1) = n2−n > (n−1)n−1 = g(n, n+1),

there are p, q ≥ 0 such that np+ (n+ 1)q = n2 + n− s− t. Then, since

(x1, y1)
np−→ (x1, y1)

s−→ (x2, y1)
t1−→ (x2, vj)

(n+1)q−→ (x2, vj)
t−t1−→ (x2, y2)

and np + s + t1 + (n + 1)q + t − t1 = (n2 + n − s − t) + s + t = n2 + n,

(x1, y1)
n2+n−→ (x2, y2). If t = 0, then y1 = y2. As E is strongly connected,

y1
t1−→ v0

t2−→ y1 for some 0 ≤ t1, t2 ≤ n+ 1 such that t1 + t2 ≤ n+ 1. Since

n2+n−s−(t1+t2) ≥ n2+n−(n−1)−(n+1) = n2−n > n2−n−1 = g(n, n+1),

there are p, q ≥ 0 such that np+ (n+1)q = n2 + n− s− (t1 + t2). Then, since

(x1, y1)
np−→ (x1, y1)

s−→ (x2, y1)
t1−→ (x2, v0)

(n+1)q−→ (x2, v0)
t2−→ (x2, y1)

and np+ s+ t1 + (n+1)q+ t2 = (n2 +n− s− (t1 + t2)) + s+ t1 + t2 = n2 +n,

(x1, y1)
n2+n−→ (x2, y2). So exp(D × E) ≤ n2 + n.

(ii) Now we characterize all the extremal graphs. Let exp(D×E) = n2 + n.
It is possible only in Case (i)b where E has no directed cycle of length n + 2.
If s + t ≤ 2n − 1, then similarly as above, exp(D × E) ≤ n2 + n − 1. So
s = n−1 and t = n+1. Let (x1, y1) and (x2, y2) be vertices of D×E such that

x1
s−→ x2, y1

t−→ y2. Also let w0 be the only vertex of E such that w0 ̸= vi
for all i = 0, 1, . . . , n. Since E is strongly connected, there are i, j such that
(vi, w0), (w0, vj) ∈ AE . So we may also assume (vn, w0) ∈ AE . As w0 → vj →
vj+1 → · · · → vn → w0 is a directed cycle of length n ≤ n+ 2− j < n+ 2, j is
1 or 2.

Case (ii)a: j = 1.
As there can be only directed cycles of order n or n+ 1 in E, among the arcs
which are adjacent to w0, at most one of (w0, v2), (vn−1, w0) may exist. Since

y1
n+1−→ y2, (y1, y2) is (v0, w0) in the first case, and (w0, v0) in the second case.

Let 0 ≤ k < l ≤ n. If (vl, vk) ∈ AE , then vk
l−k−→ vl → vk is a directed cycle of

length l−k+1, and hence l = k+n−1 or l = k+n. So (k, l) is (0, n−1), (0, n)
or (1, n). When (k, l) is (0, n− 1), (y1, y2) is (v0, w0) and when (k, l) is (1, n),

(y1, y2) is (v0, w0) or (w0, v0). If (vk, vl) ∈ AE , then vk → vl
n+1−l−→ v0

k−→ vk is a
directed cycle of length n−l+k+2, and hence l = k+1 or l = k+2. Let l = k+2.
If k ≥ 1, then (y1.y2) does not exist. So (k, l) is (0, 2) and (y1, y2) is (w0, v0).
In conclusion, there are two possible forms of digraphs. Firstly, when (y1, y2)
= (v0, w0), the only arcs which might be added to (A0)n+2 ∪ {(w0, v1)} are

(w0, v2), (vn−1, v0), and (vn, v1). As ˜Bn+2 = {(w0, v1), (w0, v2), (vn−1, v0), (vn,



EXPONENTS OF CARTESIAN PRODUCTS 1161

v1)}, E is a subgraph of ˜En+2. Secondly, when (y1, y2) = (w0, v0), the only
arcs which might be added to (A0)n+2∪{(w0, v1)} are (vn−1, w0), (vn, v1), and
(v0, v2). If we switch v0 and w0, we get the same arcs as above and hence E is

a subgraph of ˜En+2.

Case (ii)b: j = 2.
If (w0, v1) ∈ AE , then it reduces to Case (ii)a. Assume (w0, v1) /∈ AE . As there
can be only directed cycles of order n or n+1 in E, among the arcs which are to
w0, only (v0, w0) may exist. Assume (v0, w0) ∈ AE . After exchanging vi with
vn+2−i for 2 ≤ i ≤ n, and v0 with v1, we get ET where E is described in Case
(ii)a which has arc (w0, v2) and arcs of (A0)n+2

∪
{(w0, v1)}. Thus by similar

argument, ET is a subgraph of ˜En+2. Assume (v0, w0) ̸∈ AE . As there can be
only directed cycles of order n or n+1 in E, among the arcs which are from w0,
only (vn, w0) may exist where (y1, y2) is (v0, w0) or (w0, v1). Let 0 ≤ k < l ≤ n.
If (vl, vk) ∈ AE and (k, l) ̸= (0, n), then by the same argument as in Case
(ii)a, (k, l) is (0, n − 1), or (1, n) and (y1, y2) is (v0, w0). If (vk, vl) ∈ AE

where l ̸= k + 1, then by the same argument as in Case (ii)a, (k, l) is (0, 2)
or (1, 3) and (y1, y2) is (w0, v1). In conclusion, there are two possible forms of
digraphs. Firstly when (y1, y2) = (v0, w0), the only arcs which might be added
to (A0)n+2 ∪ {(w0, v2)} are (vn−1, v0) and (vn, v1) and hence E is a subgraph

of ˜En+2. Secondly when (y1, y2) = (w0, v1), the only arcs which might be
added to (A0)n+2 ∪ {(w0, v2)} are (v0, v2) and (v1, v3). After exchanging vi
with vn+2−i for 2 ≤ i ≤ n and v0 with v1, E

T is a subgraph of ˜En+2. □
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