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SELF-NORMALIZED WEAK LIMIT THEOREMS FOR A

ϕ-MIXING SEQUENCE

Yong-Kab Choi and Hee-Jin Moon

Abstract. Let {Xj , j ≥ 1} be a strictly stationary ϕ-mixing sequence of

non-degenerate random variables with EX1 = 0. In this paper, we estab-
lish a self-normalized weak invariance principle and a central limit theo-
rem for the sequence {Xj} under the condition that L(x) := EX2

1 I{|X1| ≤
x} is a slowly varying function at ∞, without any higher moment condi-

tions.

1. Introduction and results

Csörgő et al. [6] proved the following self-normalized weak invariance prin-
ciple for a sequence of i.i.d. centered random variables: Let {Xj , j ≥ 1} be
a sequence of non-degenerate i.i.d. random variables with zero means on the
probability space (Ω,F ,P), and let Sn =

∑n
j=1 Xj , V

2
n =

∑n
i=1 X

2
i . Then, on

the appropriate probability space, one can construct a standard Wiener process
{W (t), t ≥ 0} such that

(1.1) sup
0≤t≤1

∣∣∣∣∣S[nt]

Vn
− W (nt)√

n

∣∣∣∣∣ P−→ 0, n → ∞

if and only if

(1.2) L(x) := EX2
1I{|X1| ≤ x} is a slowly varying function at ∞.

Other related results for self-normalized limit theory have been developed
by many authors, e.g., the LIL was obtained in Griffin and Kuelbs [8], the large
deviation principle can be found in Shao [15], the lag increment theorems in
Wang [16] and Csörgő et al. [5], and the functional central limit theorem in
Račkauskas and Suquet [12].

On the other hand, consider a sequence of dependent random variables
{Xj ; j ≥ 1}. Let {Xj ; j ≥ 1} be a strictly stationary sequence of random
variables on (Ω,F ,P). Set Fb

a = σ(Xi; a ≤ i ≤ b), a σ-algebra generated by
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Xi for a ≤ i ≤ b, where 1 ≤ a ≤ b < ∞. Then we say that {Xj , j ≥ 1} is a
ϕ-mixing sequence if ϕ(n) → 0 as n → ∞, where

ϕ(n) = sup
m≥1

sup
A∈Fm

1 , P(A)̸=0
B∈F∞

m+n

|P(B | A)− P(B)|,

while {Xj , j ≥ 1} is said to be a ρ-mixing sequence if ρ(n) → 0 as n → ∞,
where

ρ(n) = sup
m≥1

sup
f∈L2(Fm

1 )
g∈L2(F∞

m+n)

| corr(f, g)|.

It is well-known that ρ(n) ≤ 2ϕ1/2(n). Hence a ϕ-mixing sequence is ρ-mixing.

In the sequel, the following notations will be used: Sj(k) =
∑j+k

i=j+1 Xi for j ≥
0, Sn =

∑n
i=1 Xi, [x] denotes the integer part of x, I(·) is the indicator function

and “⇒” denotes the weak convergence in the space D[0, 1] with Skorohod
topology.

Recently, Balan and Kulik [1] obtained the following self-normalized weak
invariance principle for a strictly stationary ϕ-mixing sequence of random vari-
ables, which may be motivated by the central limit theorem of Bradley [4] and
the invariance principles of Shao ([13], [14]): Let {Xj , j ≥ 1} be a strictly
stationary ϕ-mixing sequence of non-degenerate random variables such that
EX1 = 0 and (1.2) holds. Suppose that ϕ(1) < 1 and

∑∞
n=1 ϕ

1/2(n) < ∞.
Then, on an appropriate probability space,

(1.3) sup
0≤t≤1

∣∣∣∣∣S[nt]

βVn
−

W (s2[nt])

sn

∣∣∣∣∣ P−→ 0, n → ∞

for some suitable constants s2k and positive constant β.
For our purpose, let us introduce the following conditions and notations.

Let {Xj , j ≥ 1} be a strictly stationary ϕ-mixing sequence of non-degenerate
random variables with EX1 = 0, and let {ℓn, n ≥ 1} be a sequence of positive
integers such that 1 ≤ ℓn ≤ n, ℓn → ∞, ℓn = o(n), as n → ∞, and further ℓn
is slowly varying. Write ℓ = ℓn and set, for each ℓ,

B2
n =

1

n− ℓ+ 1

n−ℓ∑
i=0

(
Si(ℓ)√

ℓ

)2

.

In order to make the central limit theorem applicable in practice from the
given data, Peligrad and Shao [11] used a self-normalizer

√
ℓBn for Sn and

proved the central limit theorem

Sn√
ℓBn

D−→ N(0, 1), n → ∞

under the centered stationary ρ-mixing sequence assumption with E(X1)
2 < ∞.
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Let {Xj , j ≥ 1} be a strictly stationary ϕ-mixing sequence of non-degenerate
random variables such that EX1 = 0, and let

(1.4) L(x) := EX2
1I{|X1| ≤ x} is a slowly varying function at ∞.

The aim of this paper is to obtain a self-normalized weak invariance principle
and a central limit theorem for the strictly stationary ϕ-mixing sequence of the
forms (1.1) and (1.3) by using the self-normalizer

√
ℓBn instead of βVn, under

the condition (1.4) without any higher moment conditions.
Set b = inf{x ≥ 1 : L(x) > 0} and define

zn = inf

{
s : s ≥ b+ 1,

L(s)

s2
≤ 1

nℓ

}
, n ≥ 1.

One can easily obtain the following properties on zn and L(·):

nℓL(zn) = z2n and zn → ∞ as n → ∞.

We refer the reader to [2] and [4] for more details of these zn and L(·).

For convenience, we denote that, for each j = 1, 2, . . .,

Yj,n = XjI(|Xj | ≤ zn), Ȳj,n = Xj − Yj,n = XjI(|Xj | > zn), n ≥ 1,

and set for each k = 1, 2, . . . and i ≥ 0

S
(n)
i (k) =

i+k∑
j=i+1

Yj,n, S̄
(n)
i (k) =

i+k∑
j=i+1

Ȳj,n,

T
(n)
i (k) =

i+k∑
j=i+1

(Yj,n − EYj,n), T̄
(n)
i (k) =

i+k∑
j=i+1

(Ȳj,n − EȲj,n),

S
(n)
k =

k∑
j=1

Yj,n, T
(n)
k =

k∑
j=1

(Yj,n − EYj,n).

Clearly, Si(k) = S
(n)
i (k) + S̄

(n)
i (k) = T

(n)
i (k) + T̄

(n)
i (k). Finally, we define for

each k, n = 1, 2, . . .

(1.5) νk = ν
(n)
k =

{
Var
(
S
(n)
k

)}1/2
and γk = γ

(n)
k = νk

/
{ℓL(zn)}1/2.

Our main results are as follows:

Theorem 1.1. Let {Xj , j ≥ 1} be a strictly stationary ϕ-mixing sequence
of non-degenerate random variables such that EX1 = 0 and the condition (1.4)
holds. Suppose that ϕ(1) < 1 and

∑∞
n=1 ϕ

1/2(n) < ∞. Then, on an appropriate
probability space for X1, X2, . . ., we can construct a standard Wiener process
{W (t), 0 ≤ t < ∞} such that

sup
0≤t≤1

∣∣∣∣∣ S[ℓt]√
ℓBn

−
W (s2[ℓt])

sℓ

∣∣∣∣∣ P−→ 0, n → ∞
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for some suitable constants s2k, which will be specified later on (see the proof of
Proposition 2.1 below).

Theorem 1.2. Under the assumptions of Theorem 1.1, we have, as n → ∞,

Sℓ√
ℓBn

D−→ N(0, 1) and
S[ℓt]√
ℓBn

⇒ W (t) for 0 ≤ t ≤ 1.

2. Proofs

The proofs of Theorems 1.1 and 1.2 will be accomplished through the fol-
lowing several lemmas and Propositions 2.1-2.4.

Lemma 2.1 ([11]). Let {Xj , j ≥ 1} be a ρ-mixing sequence of random variables
with EXj = 0 and EX2

j < ∞. Then

E

(
n∑

i=1

Xi

)2

≤ C · exp

(
2

[log2 n]∑
i=0

ρ(2i)

)
· n ·max

i≤n
EX2

i .

Lemma 2.2 ([11]). Suppose that {Xj , j ≥ 1} is a ρ-mixing sequence of ran-
dom variables. Let {ℓn, n ≥ 1} be a sequence of integers with 1 ≤ ℓn ≤
n, and let f be a real-valued Borel measurable function on Rℓn . Put Zj =
f(Xj+1, . . . , Xj+ℓn). Then we have

Var

(
n∑

j=0

Zj

)
≤ 106nℓn exp

(
2

[log2 n]∑
i=0

ρ(2i)

)
max
j≤n

EZ2
j .

Lemma 2.3 ([10]). Let {Xj , j ≥ 1} be a strictly stationary sequence with
EX1 = 0 and σ2

n := Var(Sn) → ∞. Suppose that a function q : [0,∞) → [0,∞)
satisfies the conditions: (A1) q is continuous and q(0) = 0; (A2) q(x)/x2+δ0 is
nondecreasing for some δ0 > 0 (for all x sufficiently large); (A3) q(2x) ≤ cq(x)
with some constant c > 0 (for all x sufficiently large). Then there is a constant
K > 0 such that

Eq

(
max
1≤i≤n

|Si|
/
σn

)
≤ K for every n ≥ 1.

Lemma 2.4. For any real vectors (x1, . . . , xn), (y1, . . . , yn) ∈ Rn, n = 1, 2, . . .,
and any positive real c, we have∣∣∣∣∣∣

∣∣∣∣∣
n∑

i=1

(xi + yi)
2

∣∣∣∣∣
1/2

− c1/2

∣∣∣∣∣∣ ≤
∣∣∣∣∣

n∑
i=1

x2
i − c

∣∣∣∣∣
1/2

+

∣∣∣∣∣
n∑

i=1

y2i

∣∣∣∣∣
1/2

.

Proof. By the Minkowski inequality and the elementary inequality
√
a−

√
b ≤√

|a− b| for a, b ≥ 0, we have∣∣∣∣∣
n∑

i=1

(xi + yi)
2

∣∣∣∣∣
1/2

− c1/2 ≤

∣∣∣∣∣
n∑

i=1

x2
i

∣∣∣∣∣
1/2

+

∣∣∣∣∣
n∑

i=1

y2i

∣∣∣∣∣
1/2

− c1/2
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≤

∣∣∣∣∣
n∑

i=1

x2
i − c

∣∣∣∣∣
1/2

+

∣∣∣∣∣
n∑

i=1

y2i

∣∣∣∣∣
1/2

.

On the other hand, using the inequality ∥x+ y∥2 ≥ ∥x∥2 − ∥y∥2 yields

c1/2 −

∣∣∣∣∣
n∑

i=1

(xi + yi)
2

∣∣∣∣∣
1/2

≤ c1/2 −

∣∣∣∣∣
n∑

i=1

x2
i

∣∣∣∣∣
1/2

+

∣∣∣∣∣
n∑

i=1

y2i

∣∣∣∣∣
1/2

≤

∣∣∣∣∣ c−
n∑

i=1

x2
i

∣∣∣∣∣
1/2

+

∣∣∣∣∣
n∑

i=1

y2i

∣∣∣∣∣
1/2

.

□

Lemma 2.5. Let {Xj , j ≥ 1} be a strictly stationary sequence of nondegener-
ate random variables with EX1 = 0. Suppose that

∑∞
n=1 ρ(2

n) < ∞. Then, for
the γℓ in (1.5), we have

Bn√
L(zn)

− γℓ → 0 as n → ∞ in the mean.

Proof. From Lemma 2.4, it follows that

(2.1)

∣∣∣∣∣ Bn√
L(zn)

− γℓ

∣∣∣∣∣
=

1√
L(zn)

∣∣∣∣Bn −
{
Var
(
S
(n)
ℓ

)
/ℓ
}1/2

∣∣∣∣
=

1√
ℓ(n− ℓ+ 1)L(zn)

∣∣∣∣∣∣
(

n−ℓ∑
i=0

(Si(ℓ))
2

)1/2

−

(
n−ℓ∑
i=0

Var
(
S
(n)
ℓ

))1/2
∣∣∣∣∣∣

=
1√

ℓ(n− ℓ+ 1)L(zn)

∣∣∣∣∣∣
(

n−ℓ∑
i=0

(
T

(n)
i (ℓ) + T̄

(n)
i (ℓ)

)2)1/2

−

(
E

(
n−ℓ∑
i=0

{T (n)
i (ℓ)}2

))1/2
∣∣∣∣∣∣

≤ 1√
ℓ(n− ℓ+ 1)L(zn)

∣∣∣∣∣
n−ℓ∑
i=0

{
T

(n)
i (ℓ)

}2 − E

(
n−ℓ∑
i=0

{T (n)
i (ℓ)}2

)∣∣∣∣∣
1/2

+
1√

ℓ(n− ℓ+ 1)L(zn)

(
n−ℓ∑
i=0

{T̄ (n)
i (ℓ)}2

)1/2

=: I1 + I2.



1144 YONG-KAB CHOI AND HEE-JIN MOON

We first compute I1. By the Hölder inequality, we have

E

∣∣∣∣∣
n−ℓ∑
i=0

{
T

(n)
i (ℓ)

}2 − E

(
n−ℓ∑
i=0

{T (n)
i (ℓ)}2

)∣∣∣∣∣
1/2

≤

E

(
n−ℓ∑
i=0

{
T

(n)
i (ℓ)

}2 − E

(
n−ℓ∑
i=0

{T (n)
i (ℓ)}2

))2


1/4

=

{
Var

(
n−ℓ∑
i=0

{
T

(n)
i (ℓ)

}2)}1/4

.

By Lemma 2.2 with Zi := {T (n)
i (ℓ)}2, we have

Var

(
n−ℓ∑
i=0

{
T

(n)
i (ℓ)

}2) ≤ C · (n− ℓ) · ℓ · exp

(
2

[log2(n−ℓ)]∑
i=0

ρ(2i)

)
max

0≤i≤n−ℓ
E{T (n)

i (ℓ)}4.

Applying Lemma 2.3 to the sequence {Yj,n−EYj,n; 1 ≤ j ≤ ℓ} and the function
q(x) = x4, we have

E{T (n)
i (ℓ)}4 = E{T (n)

ℓ }4 ≤ K
(
VarT

(n)
ℓ

)2
= K

(
E{T (n)

ℓ }2
)2

.

It is easily seen from Lemma 2.1 that

E{T (n)
ℓ }2 = E

(
ℓ∑

j=1

(Yj,n − EYj,n)

)2

≤ Cℓ exp

(
2

[log2(n−ℓ)]∑
i=0

ρ(2i)

)
max
1≤i≤ℓ

E{Yj,n − EYj,n}2

≤ CℓL(zn).

Combining these results, we obtain

(2.2)

EI1 ≤ C

{
ℓ3(n− ℓ)

(
L(zn)

)2}1/4√
ℓ(n− ℓ+ 1)L(zn)

= C

(
ℓ3(n− ℓ)

(
L(zn)

)2
ℓ2(n− ℓ+ 1)2

(
L(zn)

)2
)1/4

= C

(
ℓ

n− ℓ+ 1

)1/4

= o(1), n → ∞.

We next compute I2. It is immediate that

E

(
n−ℓ∑
i=0

{T̄ (n)
i (ℓ)}2

)1/2

≤ E

(
n−ℓ∑
i=0

|T̄ (n)
i (ℓ)|

)
=

n−ℓ∑
i=0

E|T̄ (n)
i (ℓ)|

≤ 2
n−ℓ∑
i=0

i+ℓ∑
j=i+1

E|Xj |I(|Xj | > zn)

= 2ℓ(n− ℓ+ 1)E|X1|I(|X1| > zn).
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By the argument in the proof of Lemma 3.1 in [4], we have

(2.3) E|X1|I(|X1| > tn) = o(L(tn)/tn) as n → ∞,

whenever tn → ∞ as n → ∞. Hence

(2.4)

EI2 ≤ 2ℓ(n− ℓ+ 1)√
ℓ(n− ℓ+ 1)L(zn)

E|X1|I(|X1| > zn)

≤
2
√
ℓ(n− ℓ+ 1)L(zn)

zn

E|X1|I(|X1| > zn)

L(zn)/zn

= o(1), n → ∞.

The Lemma 2.5 follows now from (2.1), (2.2) and (2.4). □

Consider the following inequality in order to prove Theorem 1.1.

(2.5)

sup
1/ℓ≤t≤1

∣∣∣∣∣ S[ℓt]√
ℓBn

−
W (s2[ℓt])

sℓ

∣∣∣∣∣
≤ max

k≤ℓ

∣∣∣∣∣ Sk√
ℓBn

−
S
(n)
k − ES

(n)
k√

ℓBn

∣∣∣∣∣+max
k≤ℓ

∣∣∣∣∣S(n)
k − ES

(n)
k

νℓ
−

S
(n)
k − ES

(n)
k√

ℓBn

∣∣∣∣∣
+max

k≤ℓ

∣∣∣∣∣S(n)
k − ES

(n)
k

νℓ
− W (s 2

k )

νℓ

∣∣∣∣∣+max
k≤ℓ

∣∣∣∣W (s 2
k )

νℓ
− W (s 2

k )

sℓ

∣∣∣∣
=: J1(n) + J2(n) + J3(n) + J4(n).

Now we shall proceed the proof of Theorem 1.1 by dividing it into Proposi-
tions 2.1-2.4 below.

Proposition 2.1. Under the assumptions of Lemma 2.5, we have J1(n)
P−→ 0

as n → ∞.

Proof. By the Markov inequality and (2.3), we get

P

{
1√

ℓL(zn)

ℓ∑
j=1

(
|Xj |I{|Xj | > zn}+ E|Xj |I{|Xj | > zn}

)
≥ ε

}

≤ 2

ε
√
ℓL(zn)

ℓ∑
j=1

E|Xj |I{|Xj | > zn}

≤ 2

ε
√
ℓL(zn)

ℓE|X1|I{|X1| > zn}

=
2

ε

√
ℓL(zn)

zn

E|X1|I{|X1| > zn}
L(zn)/zn

= o(1)
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for any ε > 0. It is well-known that there exist positive constants C and D
such that

(2.6) C ≤
Var
(
S
(n)
m

)
mL(zn)

≤ D

for all m = 1, 2, . . . and n large (see (3.10) in [4]). Hence it follows from Lemma
2.5 that

J1(n) ≤
νℓ√
ℓBn

√
ℓL(zn)

νℓ

1√
ℓL(zn)

ℓ∑
j=1

(
|Xj |I{|Xj | > zn}+E|Xj |I{|Xj | > zn}

)
P−→ 0 as n → ∞,

which completes the proof. □

We next compute J3(n) → 0 as n → ∞ in probability. It suffices from (2.6)
to show that, as n → ∞,

(2.7)
1√

ℓL(zn)
max
k≤ℓ

∣∣S(n)
k − ES

(n)
k −W (s 2

k )
∣∣ P−→ 0.

To prove this we shall use a blocking argument. Define blocks of integers
H1, I1,H2, I2, . . . by requiring that Hk contains hk and Ik contains ik consecu-
tive integers and that there are no gaps between consecutive blocks, where

hk = CardHk =
[
aka−1 exp(ka)

]
,

ik = CardIk =
[
aka−1 exp(ka/2)

]
for some 0 < a < 1. Put

Nk =
∑
j≤k

Card(Hj ∪ Ij) ∼ exp(ka),

uk =
∑
j∈Hk

(Yj,n − EYj,n), vk =
∑
j∈Ik

(Yj,n − EYj,n).

Clearly, for each n there exists a unique mn such that Nmn ≤ n < Nmn+1.
Hence mn ∼ (log n)1/a and Nmn ∼ n. Let

σ̃ 2
i = Eu 2

i , s̃ 2
m =

m∑
i=1

σ̃ 2
i , s 2

n = s̃ 2
mn

.

Then we see that

(2.8) S
(n)
k − ES

(n)
k =

mk∑
i=1

ui +

mk∑
i=1

vi +

k∑
j=Nmk

+1

(Yj,n − EYj,n).

The following lemma corresponds to Lemma 9.2.4 in [9].
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Lemma 2.6. Let uk, vk be as above. Suppose that
∑∞

n=1 ρ(2
n) < ∞. Then

there exists a constant C = C(ρ(·)) such that for any k ≥ 0, n ≥ 1

E

(
k+n∑

i=k+1

ui

)2

≤ C

k+n∑
i=k+1

Eu2
i , E

(
k+n∑

i=k+1

vi

)2

≤ C

k+n∑
i=k+1

Ev2i .

Lemma 2.7 ([1]). If
∞∑
k=1

ϕ1/2
(
ek

a/2
)
< ∞,

then without changing its distribution, we can redefine the sequence {ui}i≥1

on a larger probability space together with a sequence {Ȳi}i≥1 of independent
random variables such that

Ȳk
D
= uk for all k,∣∣∣∣∣

m∑
k=1

uk −
m∑

k=1

Ȳk

∣∣∣∣∣ ≤ C a.s. for all m and some constant C.

The next lemma is a well-known Sakhanenko’s theorem (cf. Lemma 2 in
[6]).

Lemma 2.8. Let X1, X2, . . . be independent random variables with EXj = 0
and σ2

j = EX2
j < ∞ for each j ≥ 1. Then we can redefine {Xj , j ≥ 1} on a

richer probability space together with a sequence of independent N(0, 1)-random

variables Ỹj , j ≥ 1, such that for every p > 2 and x > 0,

P

max
i≤n

∣∣∣∣∣∣
i∑

j=1

Xi −
i∑

j=1

σj Ỹi

∣∣∣∣∣∣ ≥ x

 ≤ (Ap)px−p
n∑

j=1

E|Xj |p,

where A is an absolute positive constant.

In view of Lemma 2.8, without changing its distribution we can redefine
the sequence {Ȳi}i≥1 together with a sequence {Ỹi}i≥1 of independent normal

random variables with EỸi = 0, EỸ 2
i = σ̃2

i such that, for some δ > 0,

(2.9) P

{
max
m≤M

∣∣∣∣∣
m∑
i=1

Ȳi −
m∑
i=1

Ỹi

∣∣∣∣∣ ≥ x

}
≤ C

x2+δ

M∑
i=1

E|Ȳi|2+δ.

Furthermore, without changing its distribution we can redefine the sequence
{Ỹi}i≥1 together with a standard Wiener process W = {W (t)}t≥0 such that

W (s̃ 2
m) =

m∑
i=1

Ỹi for every m.
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By (2.8), we have, for any ε > 0,

(2.10)

P

{
max
k≤ℓ

∣∣S(n)
k − ES

(n)
k −W (s2k)

∣∣ > ε
√
ℓL(zn)

}
≤ P

{
max
m≤mℓ

∣∣∣∣∣
m∑
i=1

ui −
m∑
i=1

Ȳi

∣∣∣∣∣ > ε

4

√
ℓL(zn)

}

+ P

{
max
m≤mℓ

∣∣∣∣∣
m∑
i=1

vi

∣∣∣∣∣ > ε

4

√
ℓL(zn)

}

+ P

{
max
m≤mℓ

max
Nm≤k<Nm+1

∣∣∣∣∣
k∑

j=Nm+1

(Yj,n − EYj,n)

∣∣∣∣∣ > ε

4

√
ℓL(zn)

}

+ P

{
max
m≤mℓ

∣∣∣∣∣
m∑
i=1

Ȳi −
m∑
i=1

Ỹi

∣∣∣∣∣ > ε

4

√
ℓL(zn)

}
=: P1(n) + P2(n) + P3(n) + P4(n).

From Lemma 2.7, it is immediate that

(2.11) P1(n) = 0 for n large.

Lemma 2.9. Under the assumptions of Lemma 2.5, we have P2(n) → 0 as
n → ∞.

Proof. It follows that, for some 0 < a < 1,

(2.12)

mℓ∑
k=1

ik =

mℓ∑
k=1

[
aka−1 exp

(
ka/2

)]
≤ C

√
ℓ.

Hence, according to Lemmas 2.1 and 2.6, we have, for every m ≤ mℓ,

(2.13)

E

(
m∑

k=1

vk

)2

≤ C
m∑

k=1

Ev2k ≤ C
m∑

k=1

ikE
{
Yj,n − EYj,n

}2
≤ CL(zn)

m∑
k=1

ik ≤ C
√
ℓL(zn).

Using Lemma 2.2 in [11], we get

E max
m≤mℓ

(
m∑

k=1

vk

)2

≤ C
√
ℓ L(zn).

The result follows by the Chebyshev’s inequality. □

Lemma 2.10. Under the assumptions of Lemma 2.5, we have P3(n) → 0 as
n → ∞.
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Proof. By the Markov’s inequality, for every δ > 0,

P3(n) ≤
mℓ∑
m=1

P

{
max

Nm≤k<Nm+1

∣∣∣∣∣
k∑

j=Nm+1

(Yj,n − EYj,n)

∣∣∣∣∣ > ε

4

√
ℓL(zn)

}

≤ C

(ℓL(zn))(2+δ)/2

mℓ∑
m=1

E

{
max

Nm≤k<Nm+1

∣∣∣∣∣
k∑

j=Nm+1

(Yj,n − EYj,n)

∣∣∣∣∣
}2+δ

.

Applying Lemma 2.3 for δ > δ0, we obtain

E

{
max

Nm≤k<Nm+1

∣∣∣∣∣
k∑

j=Nm+1

(Yj,n − EYj,n)

∣∣∣∣∣
}2+δ

≤ K

{
Var

(
Nm+1∑

j=Nm+1

(Yj,n − EYj,n)

)}(2+δ)/2

≤ K

{
E

(
Nm+1∑

j=Nm+1

(Yj,n − EYj,n)

)2}(2+δ)/2

,

and, by Lemma 2.1,

E

(
Nm+1∑

j=Nm+1

(Yj,n − EYj,n)

)2

≤ C(Nm+1 −Nm)E(Yj,n − EYj,n)
2

≤ ChmL(zn).

It is easily seen that

(2.14)

mℓ∑
m=1

h(2+δ)/2
m =

mℓ∑
m=1

o
(
ma−1e(2+δ)ma/2

)
= o
(
e(2+δ)ma

ℓ /2
)
= o
(
ℓ(2+δ)/2

)
for some 0 < a < 1. Combining the above results, we have

P3(n) ≤
C

(ℓL(zn))(2+δ)/2

mℓ∑
m=1

h(2+δ)/2
m {L(zn)}(2+δ)/2 = o(1).

This completes the proof of Lemma 2.10. □

Lemma 2.11. Under the assumptions of Lemma 2.5, we have P4(n) → 0 as
n → ∞.

Proof. Using Lemmas 2.1, 2.3 and 2.7, we have, for δ > δ′ > 0

E|Ȳi|2+δ = E|ui|2+δ ≤ K

(
Var

( ∑
j∈Hi

(Yj,n − EYj,n)

))(2+δ)/2

= K

(
E

{ ∑
j∈Hi

(Yj,n − EYj,n)

}2)(2+δ)/2
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≤ C h
(2+δ)/2
i

(
L(zn)

)(2+δ)/2
.

Hence, together with (2.14), we have

1

{ℓL(zn)}1+δ/2

mℓ∑
i=1

E|Ȳi|2+δ ≤ C

(ℓL(zn))1+δ/2

mℓ∑
i=1

h
(2+δ)/2
i

(
L(zn)

)(2+δ)/2

→ 0 as n → ∞.

By (2.9), we obtain

P4(n) → 0 as n → ∞. □

Combining (2.11), Lemmas 2.9–2.11 and (2.10), we have the following result.

Proposition 2.2. If ϕ(1) < 1 and
∑∞

n=1 ϕ
1/2(n) < ∞, then J3(n)

P−→ 0 as
n → ∞.

Proposition 2.3. Under the assumptions of Lemma 2.5, we have J4(n)
P−→ 0

as n → ∞.

Proof. We have

J4(n) =

∣∣∣∣sℓνℓ − 1

∣∣∣∣max
k≤ℓ

|W (s2k)|
sℓ

.

It is easy to check that

max
k≤ℓ

|W (s2k)|
sℓ

P−→ C as ℓ → ∞

for some positive constant C. Thus we only need to show that sℓ ∼ νℓ. Since

s2ℓ
ν2ℓ

− 1 =
1

γ2
ℓ

1

ℓL(zn)

(
s2ℓ − Var

(
S
(n)
ℓ

))
,

it is sufficient to show that

(2.15)
1

ℓL(zn)

(
s2ℓ − Var

(
S
(n)
ℓ

))
→ 0 as n → ∞.

From (2.8) we have

(2.16)

Var
(
S
(n)
ℓ

)
= E

(
mℓ∑
k=1

uk

)2

+ E

(
mℓ∑
k=1

vk +
ℓ∑

j=Nmℓ
+1

(Yj,n − EYj,n)

)2

+ 2E

{(
mℓ∑
k=1

uk

)(
mℓ∑
k=1

vk +

ℓ∑
j=Nmℓ

+1

(Yj,n − EYj,n)

)}
.
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Noting that
∑mℓ

i=1 hi ≤ Cℓ, it follows from Kronecker’s lemma and Toeplitz’s
lemma that

(2.17)

E

(
mℓ∑
k=1

uk

)2

− s2ℓ = 2

mℓ−1∑
k=1

mℓ∑
j=k+1

Eukuj

≤ C

mℓ−1∑
k=1

mℓ∑
j=k+1

ϕ1/2(ik)
(
Eu2

k

)1/2 (
Eu2

j

)1/2
≤ C

mℓ∑
j=2

h
1/2
j

j−1∑
k=1

ϕ1/2(ik)h
1/2
k L(zn)

= C

mℓ∑
j=2

hj

(
o
(
h
1/2
j

)
/h

1/2
j

)
L(zn)

= o

mℓ∑
j=2

hj

L(zn) = o(ℓL(zn)).

Using (2.13), Lemma 2.1 and the property of Nk, we have

(2.18)

E

(
mℓ∑
k=1

vk +
ℓ∑

j=Nmℓ
+1

(Yj,n − EYj,n)

)2

≤ 2

{
E

(
mℓ∑
k=1

vk

)2

+ E

(
ℓ∑

j=Nmℓ
+1

(Yj,n − EYj,n)

)2}
≤ C

(√
ℓL(zn) + (ℓ−Nmℓ

)L(zn)
)

= o(ℓL(zn)).

On the other hand, the Hölder’s inequality yields

(2.19)

E

∣∣∣∣∣
(

mℓ∑
k=1

uk

)(
mℓ∑
k=1

vk +
ℓ∑

j=Nmℓ
+1

(Yj,n − EYj,n)

)∣∣∣∣∣
≤

{
E

(
mℓ∑
k=1

uk

)2}1/2{
E

(
mℓ∑
k=1

vk +
ℓ∑

j=Nmℓ
+1

(Yj,n − EYj,n)

)2}1/2

≤ C{ℓL(zn)}1/2{(
√
ℓ+ ℓ−Nmℓ

)L(zn)}1/2

= o(ℓL(zn)).

Substituting (2.17)–(2.19) into (2.16) yields (2.15). This completes the proof.
□

Proposition 2.4. Under the assumptions of Proposition 2.2, we have J2(n)
P−→

0 as n → ∞.
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Proof. Note that

J2(n) =

∣∣∣∣∣ 1νℓ − 1√
ℓBn

∣∣∣∣∣max
k≤ℓ

∣∣∣S(n)
k − ES

(n)
k

∣∣∣
=

∣∣∣∣∣1− νℓ√
ℓBn

∣∣∣∣∣max
k≤ℓ

∣∣∣S(n)
k − ES

(n)
k

∣∣∣
νℓ

≤

∣∣∣∣∣1− νℓ√
ℓBn

∣∣∣∣∣
(
J3(n) + J4(n) + max

k≤ℓ

∣∣W (s2k)∣∣
sℓ

)
.

Combining Lemma 2.5 with Propositions 2.2–2.3 gives J2(n)
P−→ 0 as n →

∞. □

Proof of Theorem 1.1. The proof is immediate from (2.5) and Propositions 2.1-
2.4. □

Proof of Theorem 1.2. The first statement of Theorem 1.2 is immediate from
the second one. Hence we need only to prove the second one. By the Slutsky

lemma, we see that W (s2[ℓt])/sℓ
D
= W (s2[ℓt]/s

2
ℓ) for all 0 ≤ t ≤ 1. Thus, it suffices

to show that

sup
0≤t≤1

∣∣∣∣∣W
(
s2[ℓt]

s2ℓ

)
−W (t)

∣∣∣∣∣ P−→ 0 as ℓ → ∞.

We consider

sup
0≤t≤1

∣∣∣∣∣W
(
s2[ℓt]

s2ℓ

)
−W (t)

∣∣∣∣∣
≤ sup

0≤t≤1

∣∣∣∣∣W
(
s2[ℓt]

s2ℓ

)
−W

(
[ℓt]

ℓ

)∣∣∣∣∣+ sup
0≤t≤1

∣∣∣∣W (
[ℓt]

ℓ

)
−W (t)

∣∣∣∣
=: Q1(n) +Q2(n).

By the uniform continuity of Wiener process, Q2(n) = o(1) a.s. If now we
prove that

(2.20) sup
0≤t≤1

∣∣∣∣∣s
2
[ℓt]

s2ℓ
− [ℓt]

ℓ

∣∣∣∣∣ = o(1),

then this, together with the Etemadi’s maximal inequality (cf. [7]) and the

Markov’s inequality, gives Q1(n)
P−→ 0. Indeed, by Lemma 3.5 in [14], ν2ℓ

is regularly varying at ∞ with exponent 1. Since s2ℓ ∼ ν2ℓ in the proof of
Proposition 2.3, we can obtain (2.20) by the uniform convergence theorem of a
regularly varying function (see Theorem 1.5.2 in [3]). This completes the proof
of Theorem 1.2. □
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