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AN EXTENSION OF AN ANALYTIC FORMULA OF THE

DETERMINISTIC EPIDEMICS MODEL PROBLEM

THROUGH LIE GROUP OF OPERATORS

Hemant Kumar and Shilesh Kumari

Abstract. In the present paper, we evaluate an analytic formula as a
solution of Susceptible Infective (SI) model problem for communicable
disease in which the daily contact rate (C(N)) is supposed to be varied

linearly with population size N(t) that is large so that it is considered as
a continuous variable of time t. Again, we introduce some Lie group of
operators to make an extension of above analytic formula of the determin-
istic epidemics model problem. Finally, we discuss some of its particular

cases.

1. Introduction

In population dynamics, various deterministic epidemics model problems
involving differential equations were studied and obtained due to Kermack and
McKendrick [8, 9] and Bailey [1] etc. Kapur [7] has been introduced and
solved several mathematical models of epidemics through systems of ordinary
differential equations of first order. Recently, Joshi [6] has presented a solution
of the deterministic epidemics model in terms of the hypergeometric functions

0F1(·) (See Rainville [10]). On epidemics modeling a study has also done by
Daley and Gani [2]. Hethcote [4] has presented mathematical interpretations
on infectious diseases and lateron he [5] has described basic epidemiological
models.

An epidemic usually describes as occurrence of a diseases in excess to nor-
mal expectations. Since contiguousness is one of the main causes of spread
of such epidemics, the term epidemiology has been applied to general study
and deriving measures of controlling all communicable diseases. The general
model for communicable disease in which an infected person does not recover
is known as SI model. In this model at a time t, total population N(t) is di-
vided into two disjoint classes namely infective class I(t) consisting of totally
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of infected individuals who can transmit disease and the susceptible class S(t)
of the individuals who can incur disease by contact the infected individuals.

The confluent hypergeometric differential equation, satisfying by the conflu-

ent hypergeometric function u =1 F1

(
a;
c; z
)
, is given by (See Rainville [10])

(1.1) z
d2u

dz2
+ (c− z)

du

dz
− au = 0,

where, c is not an integer.

Again, the asymptotic estimates of 1F1

(
a;
c; z
)
are given by (See Srivastava

and Manocha [11])

(1.2) 1F1

(
a;

c;
z

)
=

{
Γ(c)
Γ(a)e

zza−c{1 +O(|z|−1)},Re(z) → ∞
Γ(c)

Γ(c−a) (−z)−a{1 +O(|z|−1)},Re(z) → −∞

}
,

where, a and c are bounded complex numbers.
Here, in our investigations, we evaluate an analytic formula as a solution

of Susceptible Infective (SI) model problem for communicable disease in which
the daily contact rate (C(N)) is supposed to be varied linearly with population
size N(t) that is large so that it is considered as a continuous variable of time
t. Again, we introduce some Lie group of operators to make an extension of
above analytic formula of the deterministic epidemics model problem. Finally,
we discuss some of its particular cases.

2. Deterministic mathematical model of epidemics

In this section, we construct an epidemics model problem and then convert
it in terms of the differential equation satisfied by the Kummer’s confluent

hypergeometric function 1F1

(
a;
c; z
)
(See Rainville [10]).

In this model, the population size N(t) is so large that it can be considered
as a continuous variable of time t. The population is changing on account of
immigration, births, emigration and deaths (due to disease in question or other
causes). Let β be the rate at which the population is receiving new individuals
due to immigration and birth and µ be the rate at which individuals are being
removed on account of emigration and death. Hence all the new entrants
are assumed to be susceptible. The population is assumed to be uniform or
homogeneous. The daily contact rate C(N), at which number of susceptibles
are become infected, is taken by αIS−nN(β−µ), n ∈ {0, 1, 2, . . .} and α, β, µ ∈
R (the set of real numbers).

The initial value problem for the SI model can be put in the form:

(2.1)
dS

dt
= βN − µS − αIS + nN(β − µ),

(2.2)
dI

dt
= αIS − µI − nN(β − µ),
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(2.3) N = I + S;

where, n is a parameter such that n ∈ {0, 1, 2, . . .} and α, β, µ ∈ R (set of
real numbers) such that (β − µ) > 0; N(0) = N0 > 0, S(0) = S0 > 0 and
I(0) = I0 > 0.

Now adding the equations (2.1) and (2.2) and then making an appeal to the
equation (2.3), we find

(2.4)
dN

dt
= N(β − µ).

So that the equation (2.4) gives us

(2.5) N = N0e
(β−µ)t

provided that all conditions of the equation (2.3) are followed and t > 0.
Further, setting du

dt = −αSu in the equation (2.1) and then making an
application of equation (2.3), we find that

(2.6)
d2u

dt
+ (µ+ αN)

du

dt
+ ((n+ 1)αβN − nαµN)u = 0.

Now, making an appeal to the equations (2.4), (2.5) and (2.6), we get a
transformed equation in the form

(2.7) N2 d2u

dN2
+

(
β

β − µ
+

α

β − µ
N

)
N

du

dN
+

(
β

β − µ
+ n

)
α

β − µ
Nu = 0.

Again, set α
β−µN = −M in the equation (2.7), we find another transformed

equation in the form of confluent hypergeometric differential equation as

(2.8)

[
M

d2u

dM2
+

(
β

β − µ
−M

)
du

dM
−
(

β

β − µ
+ n

)
u

]
= 0.

Hence, with the aid of the equation (1.1), the general solution of the equation
(2.8) may be written in the form

(2.9) u(gβ,µ;M) =

∞∑
n=0

Cn1F1

(
β

β−µ + n;
β

β−µ ;
M

)
,

where, β
β−µ is bounded and (β − µ) > 0 and all Cn, where n ∈ {0, 1, 2, . . .} are

arbitrary constants, gβ,µ is the function of β and µ only.
With the help of the equations (1.2) and (2.9), we may evaluate the asymp-

totic estimates of the function u(gβ,µ;M) and then, analyze asymptotically of
our epidemics model problem.

For further our investigations, replacing n by y ∂
∂y in the equation (2.8), we

construct a partial differential equation[
M

∂2

∂M2
+

(
β

β − µ
−M

)
∂

∂M
−
(

β

β − µ
+ y

∂

∂y

)]
v = 0,
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whose general solution is

(2.10) v(gβ,µ;M,y) =
∞∑

n=0

Cn1F1

(
β

β−µ + n;
β

β−µ ;
M

)
yn,

where, |y| < 1 and all conditions of the equation (2.9) are included.

3. An extension formula

On introducing more parameters in the equation (2.10), and setting Cn = 1,
∀n = 1, 2, . . . we may write

(3.1)

θ(gβ,µ;M,y, z) = y
β

β−µ z
β

β−µ v(gβ,µ;M,y, z)

=

∞∑
n=0

1F1

(
β

β−µ + n;
β

β−µ ;
M

)
y

β
β−µ+nz

β
β−µ ,

where, y and z are complex numbers and here all conditions of the equation
(2.9) are included.

In the equation (3.1), the function θ(gβ,µ;M,y, z) satisfies the partial differ-
ential equation [

M
∂2

∂M2
+

(
z
∂

∂z
−M

)
∂

∂M
−
(
y
∂

∂y

)]
θ = 0,

with simultaneous equations

(3.1a) z
∂θ

∂z
=

β

β − µ
θ and y

∂θ

∂y
=

(
β

β − µ
+ n

)
θ.

Now, to obtain an extension formula of the function θ(gβ,µ;M,y, z), given
in the equation (3.1), we introduce following Lie group of operators

(3.2) A ≡ y

[
M

∂

∂M
+ y

∂

∂y

]
and B ≡ z−1

[
M

∂

∂M
+ z

∂

∂z
− 1

]
.

Then, we evaluate following group of actions of the above Lie group of op-
erators on the basis function taken by

(3.3) θ(gβ,µ(n), gβ,µ;M,y, z) = 1F1

(
β

β−µ + n;
β

β−µ ;
M

)
y

β
β−µ+nz

β
β−µ .

Now, let gβ,µ(n) = β
β−µ + n, and gβ,µ(0) = gβ,µ = β

β−µ , then

Aθ(gβ,µ(n), gβ,µ;M,y, z) = (gβ,µ(n))θ(gβ,µ(n+ 1), gβ,µ;M,y, z),

(3.4)

Bθ(gβ,µ(n), gβ,µ;M,y, z) = (gβ,µ − 1)θ(gβ,µ(n), gβ,µ − 1;M,y, z),

exp[λA]θ(gβ,µ(n), gβ,µ;M,y, z) = θ(gβ,µ(n), gβ,µ;
M

1− λy
,

y

1− λy
, z)
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exp[ξB]θ(gβ,µ(n), gβ,µ;M,y, z) =

(
z

z + ξ

)
θ(gβ,µ(n), gβ,µ;

M

z
(z + ξ), y, z + ξ),

exp[λA+ ξB]θ(gβ,µ(n), gβ,µ;M,y, z) =
(

z

z + ξ

)
θ

(
gβ,µ(n), gβ,µ;

M

z

(
z + ξ

1− λy

)
,

y

1− λy
, z + ξ

)
.

Therefore, from the equations (3.3) and (3.4), we evaluate the relation in
the form
(3.5) (

z

z + ξ

)
θ

(
gβ,µ(n), gβ,µ;

M

z

(
z + ξ

1− λy

)
,

y

1− λy
, z + ξ

)
=

∞∑
r=0

∞∑
s=0

(gβ,µ(n))r(1− gβ,µ)s
(λ)r

r!

(−ξ)s

s!
θ(gβ,µ(n+ r), gβ,µ − s;M,y, z).

Finally, with the help of the equations (3.1), (3.3) and (3.5), we obtain the
extension formula
(3.6)(

z

z + ξ

)
θ

(
gβ,µ;

M

z

(
z + ξ

1− λy

)
,

y

1− λy
, z + ξ

)
=

∞∑
n=0

∞∑
r=0

∞∑
s=0

(gβ,µ(n))r(1− gβ,µ)s
(λ)r

r!

(−ξ)s

s!
θ(gβ,µ(n+ r), gβ,µ − s;M,y, z)

=
∞∑

n=0

∞∑
r=0

∞∑
s=0

(
β

β − µ
+ n

)
r

(
−µ

β − µ

)
s

(λ)r

r!

(−ξ)s

s!

1F1

(
β

β−µ + n+ r;
β

β−µ − s;
M

)
y

β
β−µ+n+rz

µ
β−µ−s.

4. Special cases

Set λ = 0 in the equation (3.6), particularly, we get

(4.1)

(
z

z + ξ

)
θ

(
gβ,µ;

M

z
(z + ξ), y, z + ξ

)
=

∞∑
n=0

∞∑
s=0

(1− gβ,µ)s
(−ξ)s

s!
θ(gβ,µ(n), gβ,mµ − s;M,y, z)

=
∞∑

n=0

∞∑
s=0

(
−µ

β − µ

)
s

(−ξ)s

s!
1F1

(
β

β−µ + n;
β

β−µ − s;
M

)
y

β
β−µ+nz

µ
β−µ−s.

With the help of the equations (3.1) and (4.1), we write

(4.2)

(
z

z + ξ

) ∞∑
n=0

1F1

(
β

β−µ + n;
β

β−µ ;

M

z
(z + ξ)

)
y

β
β−µ+n(z + ξ)

µ
β−µ
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=
∞∑

n=0

∞∑
s=0

(
−µ

β − µ

)
s

(−ξ)s

s!
1F1

(
β

β−µ + n;
β

β−µ − s;
M

)
y

β
β−µ+nz

µ
β−µ−s.

Now, equate the n-th term in both sides of the equation (4.2), we find the
well known result equivalent to Erde’lyi et al. [3, Section (6.14), eqn. (2)]

(4.3) 1F1

(
β

β−µ + n;
β

β−µ ;

M

z
(z + ξ)

)

= (z + ξ)
−µ
β−µ

∞∑
s=0

(
−µ

β − µ

)
s

(−ξ)s

s!
1F1

(
β

β−µ + n;
β

β−µ − s;
M

)
z

µ
β−µ−s−1.

Again, set ξ = 0 in the equation (3.6), we find that

(4.4)

θ

(
gβ,µ;

M

1− λy
,

y

1− λy
, z

)
=

∞∑
n=0

∞∑
r=0

(gβ,µ(n))r
(λ)r

r!
θ(gβ,µ(n+ r), gβ,µ;M,y, z)

=
∞∑

n=0

∞∑
r=0

(
β

β − µ
+ n

)
r

(λ)r

r!
1F1

(
β

β−µ + n+ r;
β

β−µ ;
M

)
y

β
β−µ+n+rz

µ
β−µ .

Then, with the help of the equations (3.1) and (4.4), we write

(4.5)

∞∑
n=0

1F1

(
β

β−µ + n;
β

β−µ ;

M

1− λy

)(
y

1− λy

) β
β−µ+n

z
µ

β−µ

=
∞∑

n=0

∞∑
r=0

(
β

β − µ
+ n

)
r

(λ)r

r!
1F1

(
β

β−µ + n+ r;
β

β−µ ;
M

)
y

β
β−µ+n+rz

µ
β−µ .

Now, equate the n-th term in both sides of the equation (4.5), we find the
well known result equivalent to Erde’lyi et al. [3, Section (6.14), eqn. (3)]

(4.6) 1F1

(
β

β−µ + n;
β

β−µ ;

M

1− λy

)

= (1− λy)
β

β−µ+n
∞∑
r=0

(
β

β − µ
+ n

)
r

(λy)r

r!
1F1

(
β

β−µ + n+ r;
β

β−µ ;
M

)
.

Remarks. It is noted that when n = 0 our model problem, described in equa-
tions (2.1)-(2.3), terminates into the epidemics model problem due to Joshi [6].
Again, the solution of our epidemics model problem as an extension formula
has great importance and is the powerful tool so that by which we may plot
various structures of population dynamics and then analyze it to use in Health
Sciences.
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5. Discussions

Recently, at our Kanpur city in India, an epidemic (Diarrhea) is spread at
its different places, 1, 2, 3,. . . . We collect some samples and observe that the
contact rate between susceptible and infected persons obeys the rule near to
the formula αIS−nN(β−µ), n ∈ {0, 1, 2, . . .}, here α is constant and β, µ ∈ R
(the set of real numbers).

Again, on introducing Lie groups with new parameters λ and ξ such that λ
and ξ lie in a sufficiently small neighborhood of 0 ∈ C (the set of complex num-
bers), we evaluate some transformations in the characteristic function. Then,
due to Lie group exp[λA] the transformation in the characteristic function
θ(gβ,µ(n), gβ,µ;M,y, z) occurs and we have that

(5.1)

 M
y
z

→

 M
1−λy

y
1−λy

z

 .

Further by the Lie group exp[ξB] we find the transformation in the charac-
teristic function θ(gβ,µ(n), gβ,µ;M,y, z) in the form

(5.2)

 M
y
z

→

 M
z (z + ξ)

y
z + ξ


with the multiplier

(
z

z+ξ

)
.

Therefore by introducing Lie groups the region of the domain is extended and
thus obtained analytic solution allows us to examine how an epidemic behavior
changes with variation in model parameters near the origin and to characterize
the threshold level of the disease where an epidemic become irrelevant. This
model has collective approach to describe the distribution of disease (How the
disease spreads).
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