DOI QR코드

DOI QR Code

Replication origins oriGNAI3 and oriB of the mammalian AMPD2 locus nested in a region of straight DNA flanked by intrinsically bent DNA sites

  • Received : 2010.09.02
  • Accepted : 2010.09.29
  • Published : 2010.11.30

Abstract

The aim of this work was to determine whether intrinsically bent DNA sites are present at, or close to, the mammalian replication origins oriGNAI3 and oriB in the Chinese hamster AMPD2 locus. Using an electrophoretic mobility shift assay and in silico analysis, we located four intrinsically bent DNA sites (b1 to b4) in a fragment that contains the oriGNAI3 and one site (b5) proximal to oriB. The helical parameters show that each bent DNA site is curved in a left-handed superhelical writhe. A 2D projection of 3D fragment trajectories revealed that oriGNAI3 is located in a relatively straight segment flanked by bent sites b1 and b2, which map in previously identified Scaffold/Matrix Attachment Region. Sites b3 and b4 are located approximately 2 kb downstream and force the fragment into a strong closed loop structure. The b5 site is also located in an S/MAR that is found just downstream of oriB.

Keywords

References

  1. Calladine, C. R., Drew, H. R., Luisi, B. F. and Travers, A. A. (2004) Understanding DNA: the molecule and how it works, 3nd ed., Elsevier Academic Press, Italy.
  2. Zhang, Y., Xi, Z., Hegde, R. S., Shakked, Z. and Crothers, D. M. (2004) Predicting indirect readout effects in protein-DNA interactions. Proc. Natl. Acad. Sci. U.S.A. 101, 8337-8341. https://doi.org/10.1073/pnas.0402319101
  3. Bates, A., D. and Maxwell, A. (2005) DNA Topology. Oxford University Press, Oxford.
  4. Anderson, J. N. (1986) Detection, sequence patterns and function of unusual DNA structures. Nucleic. Acids. Res. 14, 8513-8533. https://doi.org/10.1093/nar/14.21.8513
  5. Fiorini, A., Basso, L. R. Jr., Paço-Larson, M. L. and Fernandez, M. A. (2001) Mapping of intrinsic bent DNA sites in the upstream region of DNA puff BhC4-1 amplified gene. J. Cell Biochem. 83, 1-13. https://doi.org/10.1002/jcb.1188
  6. Fiorini, A., Gouveia, F. S., Soares, M. A. M., Stocker, A. J., Ciferri, R. R. and Fernandez, M. A. (2006) DNA bending in the replication zone of the C3 DNA puff amplicon of Rhynchosciara americana (Diptera: Sciaridae). Mol. Biol. Rep. 33, 71-82. https://doi.org/10.1007/s11033-006-0009-4
  7. Fiorini, A., Gouveia, F. S. and Fernandez, M. A. (2006) Scaffold/Matrix Attachment Regions and Intrinsic DNA Curvature. Biochemistry Mosc. 71, 481-488. https://doi.org/10.1134/S0006297906050038
  8. Barbosa, J. F., Bravo, J. P., Takeda, K. I., Zanatta, D. B., Silva, J. L. C., Balani, V. A., Fiorini, A. and Fernandez, M. A. (2008) Intrinsic bent DNA colocalizes with the sequence involved in the Nd-sD mutation in the Bombyx mori fibroin light chain gene. BMB Rep. 41, 394-399. https://doi.org/10.5483/BMBRep.2008.41.5.394
  9. Gouveia, F. S., Gimenes, F., Fiorini, A. and Fernandez, M. A. (2008) Intrinsic bent DNA sites in the developmentally amplified C3-22 gene promoter of Rhynchosciara americana (Diptera: Sciaridae). Biosci. Biotechnol. Biochem. 72, 1190-1198. https://doi.org/10.1271/bbb.70608
  10. Gimenes, F., Gouveia Fde, S., Fiorini, A. and Fernandez, M. A. (2008) Intrinsic bent DNA sites in the chromosomal replication origin of Xylella fastidiosa 9a5c. Braz. J. Med. Biol. Res. 41, 295-304. https://doi.org/10.1590/S0100-879X2008000400007
  11. Gimenes, F., Takeda, K. I., Gouveia, F. S., Fiorini, A. and Fernandez, M. A. (2008) Intrinsically bent DNA in replication origins and gene promoters. Genet. Mol. Res. 7, 549-558. https://doi.org/10.4238/vol7-2gmr461
  12. Gimenes, F., Assis, M. A., Fiorini, A., Mareze, V. A. and Fernandez, M. A. (2009) Intrinsically bent DNA sites in the Drosophila melanogaster third chromosome amplified domain. Mol. Genet. Genomics. 281, 539-549. https://doi.org/10.1007/s00438-009-0430-1
  13. Anglana, M., Apiou, F., Bensimon, A. and Debatisse, M. (2003) Dynamics of DNA replication in mammalian somatic cells: nucleotide pool modulates origin choice and interorigin spacing. Cell 114, 385-394. https://doi.org/10.1016/S0092-8674(03)00569-5
  14. Debatisse, M., Toledo, F. and Anglana, M. (2004) Replication initiation in mammalian cells: changing preferences. Cell Cycle 3, 19-21.
  15. Courbet, S., Gay, S., Arnoult, N., Wronka, G., Anglana, M., Brison, O. and Debatisse, M. (2008). Replication fork movement sets chromatin loop size and origin choice in mammalian cells. Nature 455, 557-560. https://doi.org/10.1038/nature07233
  16. Fernandez, M. A., Baron, B., Prigent, M., Toledo, F., Buttin, G. and Debatisse, M. (1997) Matrix attachment regions and transcription units in a polygenic mammalian locus overlapping two isochores. J. Cell Biochem. 67, 541-551. https://doi.org/10.1002/(SICI)1097-4644(19971215)67:4<541::AID-JCB11>3.0.CO;2-C
  17. Ohyama, T. (2005) DNA conformation and transcription. Springer Science + Bussiness Media, New York, USA.
  18. Wu, H., M. and Crothers, D. M. (1984) The locus of sequence-directed and protein-induced DNA bending. Nature 308, 509-513. https://doi.org/10.1038/308509a0
  19. Sperbeck, S. J. and Wistow, G. J. (1998) pBendBlue: modification of the pBend system for color selectability. Biotechniques 24, 66-68.
  20. Gray, S. J., Liu, G., Altman A. L., Small L. E. and Fanning E. (2007) Discrete functional elements required for initiation activity of the chinese hamster dihydrofolate reductase origin beta at ectopic chromosomal sites. Exp. Cell Res. 313, 109-120. https://doi.org/10.1016/j.yexcr.2006.09.020
  21. Eaton, M. L., Galani, K., Kang, S., Bell, S. P. and Mac-Alpine, D. M. (2010) Conserved nucleosome positioning defines replication origins. Genes. Dev. 24, 748-753. https://doi.org/10.1101/gad.1913210
  22. MacAlpine, H. K., Gordan, R., Powell, S. K., Hartemink, A. J. and MacAlpine, D. M. (2010) Drosophila ORC localizes to open chromatin and marks sites of cohesin complex loading. Genome. Res. 20, 201-211. https://doi.org/10.1101/gr.097873.109
  23. Toledo, F., Baron, B., Fernandez, M. A., Lachages, A. M., Mayau, V., Buttin, G. and Debatisse, M. (1998) oriGNAI3: a narrow zone of preferential replication initiation in mammalian cells identified by 2D gel and competitive PCR replicon mapping techniques. Nucleic. Acids. Res. 26, 2313-2321. https://doi.org/10.1093/nar/26.10.2313
  24. Del Sal, G., ManWoletti, G. and Schneider, C. (1989) The CTAB-DNA précipitation method: a common mini-scale preparation of template DNA from phagemids, phages or plasmids suitable for sequencing. Biotechniques 7, 514-520.
  25. de Souza, O. N. and Ornstein, R. L. (1998) Inherent DNA curvature and flexibility correlate with TATA box functionality. Biopolymers 46, 403-415. https://doi.org/10.1002/(SICI)1097-0282(199811)46:6<403::AID-BIP5>3.0.CO;2-A
  26. Kim, J., Zwieb, C., Wu, C. and Adhya, S. (1989) Bending of DNA by gene regulatory proteins: construction and use of a DNA bending vector. Gene 85, 15-23. https://doi.org/10.1016/0378-1119(89)90459-9
  27. Bolshoy, A., Mcnamaera, P., Harrington, R. E. and Trifonov, E. N. (1991) Curved DNA without A-A: experimental estimation of all 16 DNA wedge angles. Proc. Natl. Acad. Sci. U.S.A. 88, 2312-2316. https://doi.org/10.1073/pnas.88.6.2312
  28. Eckdahl, T. T. and Anderson, J. N. (1987) Computer modelling of DNA structures involved in chromosome maintenance. Nucleic. Acids. Res. 15, 8531-8545. https://doi.org/10.1093/nar/15.20.8531

Cited by

  1. Cis-acting DNA sequence at a replication origin promotes repeat expansion to fragile X full mutation vol.206, pp.5, 2014, https://doi.org/10.1083/jcb.201404157
  2. Structural and functional analysis of four non-coding Y RNAs from Chinese hamster cells: identification, molecular dynamics simulations and DNA replication initiation assays vol.17, pp.1, 2016, https://doi.org/10.1186/s12867-015-0053-5
  3. Straight core structure of DNA replication origins in the mammalian AMPD2 locus vol.79, pp.1, 2014, https://doi.org/10.1134/S0006297914010064