DOI QR코드

DOI QR Code

Physical properties of novel composite using Portland cement for retro-filling material

치근단 역충전용 포틀랜드 시멘트 신복합재료의 물리적 성질 고찰

  • Lee, Sang-Jin (Department of Conservative Dentistry, Pusan National University School of Dentistry) ;
  • Cho, Ok-In (Department of Conservative Dentistry, Pusan National University School of Dentistry) ;
  • Yum, Ji-Wan (Department of Conservative Dentistry, Pusan National University School of Dentistry) ;
  • Park, Jeong-Kil (Department of Conservative Dentistry, Pusan National University School of Dentistry) ;
  • Hur, Bock (Department of Conservative Dentistry, Pusan National University School of Dentistry) ;
  • Kim, Hyeon-Cheol (Department of Conservative Dentistry, Pusan National University School of Dentistry)
  • 이상진 (부산대학교 치의학전문대학원 치과보존학교실) ;
  • 조옥인 (부산대학교 치의학전문대학원 치과보존학교실) ;
  • 염지완 (부산대학교 치의학전문대학원 치과보존학교실) ;
  • 박정길 (부산대학교 치의학전문대학원 치과보존학교실) ;
  • 허복 (부산대학교 치의학전문대학원 치과보존학교실) ;
  • 김현철 (부산대학교 치의학전문대학원 치과보존학교실)
  • Received : 2010.06.04
  • Accepted : 2010.08.30
  • Published : 2010.11.30

Abstract

Objectives: The aim of this study was to compare apical sealing ability and physical properties of MTA, MTA - AH-plus mixture (AMTA) and experimental Portland cement - Epoxy resin mixture (EPPC) for a development of a novel retro-filling material. Materials and Methods: Forty-nine extracted roots were instrumented and filled with gutta-percha. Apical root was resected at 3 mm and the retro-filling cavity was prepared for 3 mm depth. Roots were randomly divided into 3 groups of 15 roots each. The retro-filling was done using MTA, AMTA, and EPPC as the groups divided. Four roots were used as control groups. After setting in humid condition for 24 hours, the roots were immersed in 1% methylene blue dye solution for 72 hours to test the apical leakage. After immersion, the roots were vertically sectioned and photos were taken to evaluate microleakage. Setting times were measured with Vicat apparatus and digital radiographs were taken to evaluate aluminum equivalent thickness using aluminum step wedge. The results of microleakage and setting time were compared between groups using one-way ANOVA and Scheffe's post-hoc comparison at the significance level of 95%. Results: AMTA and EPPC showed less microleakage than MTA group (p < 0.05). AMTA showed the highest radio-opacity than other groups and the novel EPPC showed 5 mm aluminum thickness radio-opacity. EPPC showed the shortest initial and final setting times than other groups while the MTA showed the longest (p < 0.05). Conclusions: Under the condition of this study, the novel composite using Portland cement-Epoxy resin mixture may useful for retro-filling with the properties of favorable leakage resistance, radio-opacity and short setting time.

연구목적: 이 연구의 목적은 새로운 근단 역충전 재료를 개발하기 위해 MTA, MTA와 AH-plus 혼합물 (AMTA), 그리고 실험적 개발재료인 Portland cement-Epoxy resin composite (EPPC)의 미세 누출 및 물리적인 성질을 비교하는 것이다. 연구 재료 및 방법: 발거 치아 49개를 근관 성형하고 gutta-percha와 sealer로 충전하였다. 각 치아의 치근을 근단부 3 mm에서 절단하고 3 mm 깊이의 역충전 와동을 형성하였다. 15개씩 무작위로 분류한 치근을 세 군으로 나누어 각각 MTA, AMTA, EPPC로 충전하였고 네 개의 치근은 대조군으로 사용하였다. 각 군의 재료로 역충전이 완료된 모든 실험군을 젖은거즈로 덮고 24시간 동안 경화시켰다. 경화 후 72시간 동안 1% methylene blue 염색액에 담근 후, 치근단을 수직 절단하여 사진을 촬영하고 미세 누출을 평가하였다. Vicat apparatus를 사용하여 실험군 별로 경화시간을 측정하였으며, aluminum step wedge를 사용한 디지털 방사선 사진을 촬영하여 각 군의 방사선 불투과도를 평가하였다. 미세누출과 경화시간에 대해 각 군간의 차이를 일원배치분산분석 및 Scheffe 사후 검증으로 유의수준 95%에서 평가하였다. 결과: AMTA와 EPPC는 MTA군에 비해 적은 미세누출량을 보였다 (p < 0.05). AMTA는 가장 높은 방사선 불투과도를 보였으며 개발 재료인 EPPC군은 5 mm aluminum 두께의 방사선 불투과도를 보였다. MTA가 가장 긴 경화시간을 나타낸반면 EPPC군은 다른 군에 비해 초기경화와 최종경화 모두 가장 짧은 경화시간을 나타냈다 (p < 0.05). 결론: 이 연구 조건하에서, 신개발 재료인 EPPC는 치근단 역충전 재료로서 기존의 MTA보다 양호한 밀폐능력과 방사선 불투과성 및 짧은 경화시간 등의 역충전 재료로서 적절한 물리적 성질을 가진 것으로 보인다.

Keywords

References

  1. Torabinejad M, Watson TF, Pitt Ford TR. Sealing ability of a mineral trioxide aggregate when used as a root end filling material. J Endod 1993;19:591-595. https://doi.org/10.1016/S0099-2399(06)80271-2
  2. Camilleri J, Pitt Ford TR. Mineral trioxide aggregate: a review of the constituents and biological properties of the material. Int Endod J 2006;39:747-754. https://doi.org/10.1111/j.1365-2591.2006.01135.x
  3. Pitt Ford TR, Torabinejad M, Abedi HR, Bakland LK, Kariyawasam SP. Using mineral trioxide aggregate as a pulp-capping material. J Am Dent Assoc 1996;127:1491-1494.
  4. Salako N, Joseph B, Ritwik P, Salonen J, John P, Junaid TA. Comparison of bioactive glass, mineral trioxide aggregate, ferric sulfate, and formocresol as pulpotomy agents in rat molar. Dent Traumatol 2003;19:314-320. https://doi.org/10.1046/j.1600-9657.2003.00204.x
  5. Bakland LK. Management of traumatically injured pulps in immature teeth using MTA. J Calif Dent Assoc 2000;28:855-858.
  6. Witherspoon DE, Ham K. One-visit apexification: technique for inducing root-end barrier formation in apical closures. Pract Proced Aesthet Dent 2001;13:455-460.
  7. Holden DT, Schwartz SA, Kirkpatrick TC, Schindler WG. Clinical outcomes of artificial root-end barriers with mineral trioxide aggregate in teeth with immature apices. J Endod 2008;34:812-817. https://doi.org/10.1016/j.joen.2008.04.003
  8. Banchs F, Trope M. Revascularization of immature permanent teeth with apical periodontitis: new treatment protocol? J Endod 2004;30:196-200. https://doi.org/10.1097/00004770-200404000-00003
  9. Camilleri J. The physical properties of accelerated Portland cement for endodontic use. Int Endod J 2008;41:151-157.
  10. Islam I, Chng HK, Yap AU. Comparison of the physical and mechanical properties of MTA and portland cement. J Endod 2006;32:193-197. https://doi.org/10.1016/j.joen.2005.10.043
  11. Chng HK, Islam I, Yap AU, Tong YW, Koh ET. Properties of a new root-end filling material. J Endod 2005;31:665-668. https://doi.org/10.1097/01.don.0000157993.89164.be
  12. Torabinejad M, Hong CU, McDonald F, Pitt Ford TR.. Physical and chemical properties of a new root-filling material. J Endod 1995;21:349-353. https://doi.org/10.1016/S0099-2399(06)80967-2
  13. Sluyk SR, Moon PC, Hartwell GR. Evaluation of setting properties and retention characteristics of mineral trioxide aggregate when used as a furcation perforation repair material. J Endod 1998;24:768-771. https://doi.org/10.1016/S0099-2399(98)80171-4
  14. Wiltbank KB, Schwartz SA, Schindler WG. Effect of Selected Accelerants on the Physical Properties of Mineral Trioxide Aggregate and Portland Cement. J Endod 2007;33:1235-1238. https://doi.org/10.1016/j.joen.2007.06.016
  15. Ber BS, Hatton JF, Stewart GP. Chemical modification of proroot mta to improve handling characteristics and decrease setting time. J Endod 2007;33:1231-1234. https://doi.org/10.1016/j.joen.2007.06.012
  16. Asgary S, Shahabi S, Jafarzadeh T, Amini S, Kheirieh S. The properties of a new endodontic material. J Endod 2008;34:990-993. https://doi.org/10.1016/j.joen.2008.05.006
  17. American Society for Testing and Materials. Standard test method for time of setting of hydraulic cement by Vicat needle. ASTM C191-04. West Conshohocken, PA: American Society for Testing and Materials; 2004.
  18. Huang TH, Shie MY, Kao CT, Ding SJ. The effect of setting accelerator on properties of mineral trioxide aggregate. J Endod 2008;34:590-593. https://doi.org/10.1016/j.joen.2008.02.002
  19. Ding SJ, Kao CT, Shie MY, Hung C Jr, Huang TH. The physical and cytological properties of white MTA mixed with Na2HPO4 as an accelerant. J Endod 2008;34:748-751. https://doi.org/10.1016/j.joen.2008.02.041
  20. Ber BS, Hatton JF, Stewart GP. Chemical modification of ProRoot MTA to improve handling characteristics and decrease setting time. J Endod 2007;33:1231-1234. https://doi.org/10.1016/j.joen.2007.06.012
  21. Kogan P, He J, Glickman GN, Watanabe I. The effects of various additives on setting properties of MTA. J Endod 2006;32:569-572. https://doi.org/10.1016/j.joen.2005.08.006
  22. Hsieh SC, Teng NC, Lin YC, Lee PY, Ji DY, Chen CC, Ke ES, Lee SY, Yang JC. A novel accelerator for improving the handling properties of dental filling materials. J Endod 2009;35:1292-1295. https://doi.org/10.1016/j.joen.2009.06.007
  23. Whitworth JM, Baco L. Coronal leakage of sealer-only backfill: an in vitro evaluation. J Endod 2005;31:280-282. https://doi.org/10.1097/01.don.0000155229.80400.fa
  24. Leyhausen G, Heil J, Reifferscheid G, Waldmann P, Geurtsen W. Genotoxicity and cytotoxicity of the Epoxy resin based root canal sealer AH plus. J Endod 1999;25:109-113. https://doi.org/10.1016/S0099-2399(99)80007-7
  25. Scarparo RK, Grecca FS, Fachin EV. Analysis of tissue reactions to methacrylate resin-based, epoxy resinbased, and zinc oxide-eugenol endodontic sealers. J Endod 2009;35:229-232. https://doi.org/10.1016/j.joen.2008.10.025
  26. Al-Hiyasat AS, Tayyar M, Darmani H. Cytotoxicity evaluation of various resin based root canal sealers. Int Endod J 2010;43:148-153. https://doi.org/10.1111/j.1365-2591.2009.01669.x
  27. De Almeida WA, Leonardo MR, Tanomaru Filho M, Silva LA. Evaluation of apical sealing of three endodontic sealers. Int Endod J 2000;33:25-27. https://doi.org/10.1046/j.1365-2591.2000.00247.x
  28. Oguntebi BR, Shen C. Effect of different sealers on thermoplasticized Gutta-percha root canal obturations. J Endod 1992;18:363-366. https://doi.org/10.1016/S0099-2399(06)81219-7
  29. Kim JC, Kim MR, Ko HJ, Won KY. Apical microleakage of MTA with 4-META/MMA & TBB resin as a root-end filling material. J Kor Acad Cons Dent 2009;34:371-376. https://doi.org/10.5395/JKACD.2009.34.4.371
  30. Coomaraswamy KS, Lumley PJ, Hofmann MP. Effect of bismuth oxide radioopacifier content on the material properties of an endodontic Portland cement-based (MTA-like) system. J Endod 2007;33:295-298. https://doi.org/10.1016/j.joen.2006.11.018
  31. Ribeiro DA, Duarte MA, Matsumoto MA, Marques ME, Salvadori DM. Biocompatibility in vitro tests of mineral trioxide aggregate and regular and white Portland cements. J Endod 2005;31:605-607. https://doi.org/10.1097/01.don.0000153842.06657.e2
  32. Islam I, Chng HK, Yap AU.Comparison of the physical and mechanical properties of MTA and portland cement. J Endod 2006;32:193-197. https://doi.org/10.1016/j.joen.2005.10.043
  33. Chang SW, Yoo HM, Park DS, Oh TS, Bae KS. Ingredients and cytotoxicity of MTA and 3 kinds of Portland cements. J Kor Acad Cons Dent 2008;33:369-376. https://doi.org/10.5395/JKACD.2008.33.4.369
  34. American Society for Testing and Materials. Standard test method for time of setting of hydraulic-cement paste by Gillmore needles. ASTM C266-03. West Conshohocken, PA: American Society for Testing and Materials; 2003.
  35. International Organization for Standardization. Dental root canal sealing materials. ISO 6876:2001(E). Geneva, Switzerland: International Organization for Standardization; 2001.
  36. Watts JD, Holt DM, Beeson TJ, Kirkpatrick TC, Rutledge RE. Effects of pH and mixing agents on the temporal setting of tooth-colored and gray mineral trioxide aggregate. J Endod 2007;33:970-973. https://doi.org/10.1016/j.joen.2007.01.024
  37. Fridland M, Rosado R. Mineral trioxide aggregate (MTA) solubility and porosity with different water-topowder ratios. J Endod 2003;29:814-817. https://doi.org/10.1097/00004770-200312000-00007
  38. Dammaschke T, Gerth HU, Zuchner H, Schafer E. Chemical and physical surface and bulk material characterization of white ProRoot MTA and two Portland cements. Dent Mater 2005;21:731-738. https://doi.org/10.1016/j.dental.2005.01.019
  39. Saliba E, Abbassi-Ghadi S, Vowles R, Camilleri J, Hooper S, Camilleri J. Evaluation of the strength and radiopacity of Portland cement with varying additions of bismuth oxide. Int Endod J 2009;42:322-328. https://doi.org/10.1111/j.1365-2591.2008.01512.x
  40. Camilleri J. Hydration mechanism of mineral trioxide aggregate. Int Endod J 2007;40:462-470. https://doi.org/10.1111/j.1365-2591.2007.01248.x