DOI QR코드

DOI QR Code

Induction of Inflammatory Responses by Carbon Fullerene (C60) in Cultured RAW264.7 Cells and in Intraperitoneally Injected Mice

  • Received : 2010.05.12
  • Accepted : 2010.07.01
  • Published : 2010.12.01

Abstract

As the use of carbon fullerene increases in the chemical industry, the concern over its biological and toxicological effects is also increasing. In this study, the suspension of carbon fullerene (C60) in phosphate buffered saline was prepared and toxicity was investigated using cultured RAW 264.7 and in intraperitoneally injected mice, respectively. The average size of carbon fullerene in the suspension was $53.7{\pm}26.5nm$ when determined by particle size analyzer. Cell viability was significantly decreased by the exposure of carbon fullerene ($0.25\sim2.00\;{\mu}g/ml$) for 96 hrs in the cultured RAW 264.7 cells. Intracellular reduced glutathione (GSH) level was also decreased compared to the level of the non-treated control group during the exposure period, while the level of nitric oxide was increased. When mice were intraperitoneally injected with carbon fullerene, serum cytokine levels of IL-1 and IL-6 were increased with the increased expression of inflammatory genes in peritoneal macrophage and T cell distribution in blood lymphocytes. The results suggested inflammatory responses were induced by carbon fullerene.

Keywords

References

  1. Aillon, K.L., Xie, Y., El-Gendy, N., Berkland, C.J. and Forrest, M.L. (2009). Effects of nanomaterial physicochemical properties on in vivo toxicity. Adv. Drug Deliv. Rev., 61, 457-466. https://doi.org/10.1016/j.addr.2009.03.010
  2. Andrievsky, G.V., Kosevich, M.V., Vovk, O.M., Shelkovsky, V.S. and Vashchenko, L.A. (1995). On the production of an aqueous colloidal solution of fullerenes. J. Chem. Soc., Chem. Commun., 1281-1282.
  3. Bezmel’nitsyn, V.N., Aleksandr, E.V. and Okun, M.V. (1998). Fullerenes in solutions. Phys.-Ups., 41, 1091-1114.
  4. Bogdanoviae, V., Stankov, K., Iceviae, I., Zikic, D., Nikoliae, A., Solajiae, S., Djordjeviae, A. and Bogdanoviae, G. (2008). Fullerenol C60(OH)24 effects on antioxidative enzymes activity in irradiated human erythroleukemia cell line. J. Radiat. Res. (Tokyo), 49, 321-327. https://doi.org/10.1269/jrr.07092
  5. Dinarello, C.A. (2002). The IL-1 family and inflammatory diseases. Clin. Exp. Rheumatol., 20, S1-13.
  6. Folkmann, J.K., Risom, L., Jacobsen, N.R., Wallin, H., Loft, S. and Møller, P. (2009). Oxidatively damaged DNA in rats exposed by oral gavage to C60 fullerenes and single-walled carbon nanotubes. Environ. Health Perspect., 117, 703-708. https://doi.org/10.1289/ehp.11922
  7. Fujita, K., Morimoto, Y., Ogami, A., Myojyo, T., Tanaka, I., Shimada, M., Wang, W.N., Endoh, S., Uchida, K., Nakazato, T., Yamamoto, K., Fukui, H., Horie, M., Yoshida, Y., Iwahashi, H. and Nakanishi, J. (2009). Gene expression profiles in rat lung after inhalation exposure to C60 fullerene particles. Toxicology, 258, 47-55. https://doi.org/10.1016/j.tox.2009.01.005
  8. Han, B. and Karim, M.N. (2008). Cytotoxicity of aggregated fullerene C60 particles on CHO and MDCK cells. Scanning, 30, 213-220. https://doi.org/10.1002/sca.20081
  9. Hu, Z., Liu, S., Wei, Y., Tong, E., Cao, F. and Guan, W. (2007). Synthesis of glutathione C60 derivative and its protective effect on hydrogene peroxide-induced apoptosis in rat pheochromocytoma cells. Neurosci. Lett., 429, 81-86. https://doi.org/10.1016/j.neulet.2007.09.063
  10. Kolosnjaj, J., Szwarc, H. and Moussa, F. (2007). Toxicity studies of fullerenes and derivatives. Adv. Exp. Med. Biol., 620, 168-180. https://doi.org/10.1007/978-0-387-76713-0_13
  11. Kovochich, M., Espinasse, B., Auffan, M., Hotze, E.M., Wessel, L, Xia, T., Nel, A.E. and Wiesner, M.R. (2009). Comparative toxicity of C60 aggregates toward mammalian cells: role of tetrahydrofuran (THF) decomposition. Env. Sci. Technol., 43, 6378-6384. https://doi.org/10.1021/es900990d
  12. Kroto, H.W., Heath, J.R., O’Brien, S.C., Curl, R.F. and Smalley, R.E. (1985). C60:Buckminster-fullerene. Nature, 318, 162-163. https://doi.org/10.1038/318162a0
  13. Lens, M., Medenica, L. and Citernesi, U. (2008). Antioxidative capacity of C(60) (buckminsterfullerene) and newly synthesized fulleropyrrolidine derivatives encapsulated in liposomes. Biotechnol. Appl. Biochem., 51, 135-140. https://doi.org/10.1042/BA20080007
  14. Oberdorster, G., Maynard, A., Donaldson, K., Castranova, V., Fitzpatrick, J., Ausman, K., Carter, J., Karn, B., Kreyling, W., Lai, D., Olin, S., Monteiro-Riviere, N., Warheit, D. and Yang, H. (2005). Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part. Fibre Toxicol., 2, 8. https://doi.org/10.1186/1743-8977-2-8
  15. Park, E.J., Kim, H., Kim, Y., Yi, J., Choi, K. and Park, K. (2010). Carbon fullerene (C60s) can induce inflammatory responses in the lung of mice. Toxicol. Appl. Pharmacol., 244, 226-233. https://doi.org/10.1016/j.taap.2009.12.036
  16. Rahman, I. and Adcock, M. (2006). Oxidative stress and redox regulation of lung inflammation in COPD. Eur. Respir. J., 28, 219-242. https://doi.org/10.1183/09031936.06.00053805
  17. Rahman, I., Biswas, S.K., Jimenez, L.A., Torres, M. and Forman, H.J. (2005). Glutathione, stress responses, and redox signaling in lung inflammation. Antioxid. Redox Signal., 7, 42-59. https://doi.org/10.1089/ars.2005.7.42
  18. Rahman, I. and MacNee, W. (2000). Regulation of redox glutathione levels and gene transcription in lung inflammation: therapeutic approaches. Free Radic. Biol. Med., 28, 1405-1420. https://doi.org/10.1016/S0891-5849(00)00215-X
  19. Ryan, J.J., Bateman, H.R., Stover, A., Gomez, G., Norton, S.K., Zhao, W., Schwartz, L.B., Lenk, R. and Kepley, C.L. (2007). Fullerene nanomaterials inhibit the allergic response. J. Immunol., 179, 665-672. https://doi.org/10.4049/jimmunol.179.1.665
  20. Sayes, C.M., Marchione, A.A., Reed, K.L. and Warheit, D.B. (2007). Comparative pulmonary toxicity assessments of C60 water suspensions in rats: few differences in fullerene toxicity in vivo in contrast to in vitro profiles. Nano. Lett., 7, 2399-2406. https://doi.org/10.1021/nl0710710
  21. Snopczyñski, T., Góralczyk, K., Czaja, K., Struciñski, P., Hemik, A., Korcz, W. and Ludwicki, J.K. (2009). Nanotechnology-possibilities and hazards. Rocz Panstw Zakl Hig., 60, 101-111.
  22. Tsatsanis, C., Androulidaki, A., Venihaki, M. and Margioris, A.N. (2006). Signalling networks regulating cyclooxygenase-2. Int. J. Biochem. Cell Biol., 38, 1654-1661. https://doi.org/10.1016/j.biocel.2006.03.021
  23. Tykhomyrov, A.A., Nedzvetsky, V.S., Klochkow, V.K. and Andrievsky, G.V. (2008). Nanostructures of hydrated C60 fullerene (C60HyFn) protect rat brain against alcohol impact and attenuate behavioral impairments of alcoholized animals. Toxicology, 246, 158-165. https://doi.org/10.1016/j.tox.2008.01.005
  24. Usenko, C.Y., Harper, S.L. and Tanguay, R.L. (2008). Fullerene C60 exposure elicits an oxidative stress response in embryonic zebrafish. Toxicol. Appl. Pharmacol., 229, 44-55. https://doi.org/10.1016/j.taap.2007.12.030
  25. Zhu, S., Oberdorster, E. and Haasch, M.L. (2006). Toxicity of an engineered nanoparticle (fullerene, C60) in two aquatic species, Daphnia and fathead minnow. Mar. Environ. Res., 62, S5-S9. https://doi.org/10.1016/j.marenvres.2006.04.059

Cited by

  1. Dispersion stability of citrate- and PVP-AgNPs in biological media for cytotoxicity test vol.30, pp.3, 2013, https://doi.org/10.1007/s11814-012-0172-3
  2. Zinc oxide nanoparticle induced age dependent immunotoxicity in BALB/c mice vol.6, pp.3, 2017, https://doi.org/10.1039/C6TX00439C