DOI QR코드

DOI QR Code

평판형 증발부를 갖는 루프히트파이프에 대해 박막이론을 적용한 해석적 모델링

Analytical Modeling of a Loop Heat Pipe with a Flat Evaporator by Applying Thin-Film Theory

  • 정의국 (한국에너지기술연구원 신재생에너지연구본부) ;
  • 부준홍 (한국항공대학교 항공우주 및 기계공학부)
  • Jung, Eui-Guk (New and Renewable Energy Division, Korea Institute of Energy Research) ;
  • Boo, Joon-Hong (School of Aerospace and Mechanical Engineering, Korea Aerospace Univ.)
  • 투고 : 2010.05.26
  • 심사 : 2010.07.23
  • 발행 : 2010.12.01

초록

평판형 증발부를 갖는 루프히트파이프(LHP)에 대한 정상상태 해석모델을 제시하였다. 관련문헌의 고찰에 기초하여 LHP 의 주요 부분인 증발부, 액체저장조(보상챔버), 증기이송관, 액체이송관 및 응축부에서 온도와 압력을 예측할 수 있도록 계산과정을 제시하였으며, LHP 에서 유일하게 모세관 구조물을 가지는 증발부의 해석에 중점을 두었다. 증발부에서 액체 -기체 경계면 부근에서 압력과 온도의 영향을 고려하기 위해 박막이론을 사용하였으며, 수정된 기체분자운동이론에서 응축경계면 온도를 산정하는데 있어서 독특한 방법을 도입하였다. 응축부에서는 상변화 경계면을 단순화하여 처리함으로써 응축부 형상 변화에 상대적인 융통성을 구비하도록 하였다. 본 연구의 LHP 정상상태 해석 모델은 문헌 상의 실험결과에 의해 타당성이 증명되었다. 해석모델에 의한 예측치는 실험치와 비교할 때 절대온도를 기준으로 최대 상대오차 3% 이내로서 합리적으로 잘 일치하였다.

A steady-state analytical model was presented for a loop heat pipe (LHP) with an evaporator that has a flat geometry. On the basis of a series of reviews of the relevant literature, a sequence of calculations was proposed to predict the temperatures and pressures at each important part of the LHP: the evaporator, liquid reservoir (compensation chamber), liquid line, vapor line, and condenser. The analysis of the evaporator, which is the only part in the LHP that has a capillary structure, was emphasized. Thin-film theory is applied to account for the pressure and temperature in the region adjacent to the liquid-vapor interface in the evaporator. The present study introduced a unique method to estimate the liquid temperature at the interface. Relative freedom was assumed in the configuration of a condenser with a simplified liquid-vapor interface. Our steady-state model was validated by experimental results available in the literature. The relative error was within 3% on the absolute temperature scale, and reasonable agreement was obtained.

키워드

참고문헌

  1. Maidanik, Yu. F., 2005, "Loop Heat Pipe," Applied Thermal Engineering, Vol.25, No.5-6, pp.635-657. https://doi.org/10.1016/j.applthermaleng.2004.07.010
  2. Khrustalev, D. and Faghri, A., 1995, "Heat Transfer in the Inverted Meniscus Type Evaporator at High Heat Fluxes," Int. J. of Heat and Mass Transfer, Vol. 38, No. 16, pp. 3091-3101. https://doi.org/10.1016/0017-9310(95)00003-R
  3. Zhao, T. S. and Liao, Q., 2000, "On Capillary-driven Flow and Phase-change Heat Transfer in a Porous Structure Heated by a Finned Surface: Measurements and Modeling," Int. J. of Heat and Mass Transfer, Vol. 43, No. 7, pp. 1141-1155. https://doi.org/10.1016/S0017-9310(99)00206-9
  4. Kaya, T. and Goldak, J., 2006, "Numerical Analysis of Heat and Mass Transfer in the Capillary Structure of a Loop Heat Pipe," Int. J. of Heat and Mass Transfer, Vol. 49, No. 17-18, pp. 3211-3230. https://doi.org/10.1016/j.ijheatmasstransfer.2006.01.028
  5. Furukawa, M. 2006, "Model-based Method of Theoretical Design Analysis of a Loop Heat Pipe," J. of Thermophysics and Heat Transfer, Vol. 20, No. 1, pp. 111-121. https://doi.org/10.2514/1.14675
  6. Abhijit, A., Ambirajan, A., Jasvanth, V. S., and Kurmar, D., 2007, "Thermohydraulic Modeling of Capillary Pumped Loop and Loop Heat Pipe," J. of Thermophysics and Heat Transfer, Vol. 21, No. 2, pp. 410-421. https://doi.org/10.2514/1.26222
  7. Launay, S., Sartre, V. and Bonjour, J., 2008, "Analytical Model for Characterization of Loop Heat Pipes," J. of Thermophysics and Heat Transfer, Vol. 22, No. 4, pp. 623-631. https://doi.org/10.2514/1.37439
  8. Bai, L., Lin, G., Zhang, H., Wen, D., 2009, "Mathematical Modeling of Steady-state Operation of a Loop Heat Pipe," Applied Thermal Engineering, Article in press.
  9. Pouzet, E., Joly, J. L., Platel, V., Grandpeix, J. Y. and Butto, C., 2004, "Dynamic Response of a Capillary Pumped Loop Subjected to Various Heat Load Transients," Vol. 47, No. 10-11, pp. 2293-2316. https://doi.org/10.1016/j.ijheatmasstransfer.2003.11.003
  10. Vlassov. V. V. and Riehl, R. R., 2008, "Mathematical Model of a Loop Heat Pipe with Cylindrical Evaporator and Integrated Reservoir," Applied Thermal Engineering, Vol. 28, No. 8-9, pp. 942-953. https://doi.org/10.1016/j.applthermaleng.2007.07.016
  11. Kaya, T., Perez, R., Gregori, C. and Torres, A., 2008, “Numerical Simulation of Transient Operation of Loop Heat Pipes, " Applied Thermal Engineering, Vol. 28, No. 8-9, pp. 967-974. https://doi.org/10.1016/j.applthermaleng.2007.06.037
  12. Boo, J. H. and Jin, S. H., 1993, "Development of a Computer Code for the Performance Analysis and Design of Low-temperature Heat Pipes," Journal of the KSME, Vol. 17, No. 3, pp. 698-709.
  13. Sadasivam, R., Manglik, R. M. and Jog, M. M., 1999, "Fully Developed Forced Convection Through Trapezoidal and Hexagonal Ducts," Int. J. Heat and Mass Transfer, Vol. 42, No. 23, pp. 4321-4331. https://doi.org/10.1016/S0017-9310(99)00091-5
  14. Carey, V. P., 1992, Liquid-vapor Phase-change Phenomena, Taylor & Francis, pp. 1-167.
  15. Faghri, A., 1995, Heat Pipe Science and Technology, Taylor & Francis, pp.212-215 and pp. 579-623.
  16. Swanson, L. W. and Peterson, G. P., 1995, "The Interfacial Thermodynamics of Micro Heat Pipes," ASME J. of heat transfer, Vol. 117, pp. 195-201. https://doi.org/10.1115/1.2822303
  17. Wang, H., Garimella, S. V., and Murthy, J. Y., 2007, "Characteristics of an Evaporating Thin Film in a Microchannel," Int. J. of Heat and Mass Transfer, Vol. 50, No. 19-20, pp. 3933-3942. https://doi.org/10.1016/j.ijheatmasstransfer.2007.01.052
  18. Boo, J. H. and Chung, W. B., 2005, "Experimental Study on the Thermal Performance of Small-scale Loop Heat Pipe with Polypropylene Wick," J. of Mechanical Science and Technology, Vol. 19 No. 4, pp. 1052-1061. https://doi.org/10.1007/BF02919189
  19. Boo, J. H. and Chung, W. B., 2004, "Thermal Performance of a Small-scale Loop Heat Pipe with PP Wick," Proc. 13th Int. Heat Pipe Conference, Shanghai, China, pp. 259-264.