DOI QR코드

DOI QR Code

40 Gb/s Traveling-Wave Electroabsorption Modulator-Integrated DFB Lasers Fabricated Using Selective Area Growth

  • Kwon, Yong-Hwan (Convergence Components & Materials Research Laboratory, ETRI) ;
  • Choe, Joong-Seon (Convergence Components & Materials Research Laboratory, ETRI) ;
  • Sim, Jae-Sik (Convergence Components & Materials Research Laboratory, ETRI) ;
  • Kim, Sung-Bock (Convergence Components & Materials Research Laboratory, ETRI) ;
  • Yun, Ho-Gyeong (Convergence Components & Materials Research Laboratory, ETRI) ;
  • Choi, Kwang-Seong (Convergence Components & Materials Research Laboratory, ETRI) ;
  • Choi, Byung-Seok (Convergence Components & Materials Research Laboratory, ETRI) ;
  • Nam, Eun-Soo (Convergence Components & Materials Research Laboratory, ETRI)
  • Received : 2009.05.15
  • Accepted : 2009.08.26
  • Published : 2009.12.31

Abstract

In this paper, we present the fabrication of 40 Gb/s traveling-wave electroabsorption modulator-integrated laser (TW-EML) modules. A selective area growth method is first employed in 40 Gb/s EML fabrication to simultaneously provide active layers for lasers and modulators. The 3 dB bandwidth of a TW-EML module is measured to be 34 GHz, which is wider than that of a lumped EML module. The 40 Gb/s non-return-to-zero eye diagram shows clear openings with an average output power of +0.5 dBm.

Keywords

References

  1. H. Kawanishi et al., "EAM-Integrated DFB Laser Modules with More Than 40-GHz Bandwidth," IEEE Photon. Tech. Lett., vol. 14, 2001, pp. 954-956. (See datasheets of OL 5155M on website, www.oki.com.)
  2. Y. Akage et al., "Wide Bandwidth of over 50 GHz Traveling-Wave Electrode Electroabsorption Modulator Integrated DFB Lasers," IEE Electron. Lett., vol. 37, 2001, pp. 299-300. https://doi.org/10.1049/el:20010168
  3. R.A. Salvatore et al., "Electroabsorption Modulated Laser for Long Transmission Spans," IEEE J. Quan. Electron., vol. 38, 2002, pp. 464-476. https://doi.org/10.1109/3.998618
  4. W.J. Choi et al., "Low Insertion Loss and Low Dispersion Penalty InGaAsP Quantum-Well High-Speed Electroabsorption Modulator for 40-Gb/s Very-Short-Reach, Long-Reach, and Long-Haul Applications," IEEE J. Lightwave Tech., vol. 20, 2002, pp. 2052-2056. https://doi.org/10.1109/JLT.2002.806756
  5. M. Aoki et al., "InP-Based Reversed-Mesa Ridge-Waveguide Structure for High-Performance Long-Wavelength Laser Diodes," IEEE J. Select. Topics Quantum Electron., vol. 3, 1997, pp. 672-683. https://doi.org/10.1109/2944.605720
  6. S.H. Oh et al., "InGaAsP/InP Buried-Ridge Waveguide Laser with Improved Lateral Single-Mode Proporty," ETRI Journal, vol. 30, no. 3, June 2008, pp. 480-482. https://doi.org/10.4218/etrij.08.0208.0026
  7. J.S. Choe et al., "40 Gbps Electroabsorption Modulated DFB Laser with Tilted Facet Formed by Dry Etching," Semicond. Sci. Technol., vol. 22, 2007, pp. 802-805. https://doi.org/10.1088/0268-1242/22/7/022
  8. H.G. Yun et al., "Right-Angle-Bent CPW for the Application of the Driver-Amplifier-Integrated 40 Gbps TW-EML Module," ETRI Journal, vol. 28, 2006, pp. 648-651. https://doi.org/10.4218/etrij.06.0206.0092
  9. G.L. Li, "Concise RF Equivalent Circuit Model for Electroabsorption Modulators," IEE Electron. Lett., vol. 36, 2000, pp. 818-819.
  10. Y.H. Kwon, "Fabrication of 40 Gb/s Front-End Optical Receivers Using Spot-Size Converter Integrated Waveguide Photodiodes," ETRI Journal, vol. 27, 2005, pp. 484-490. https://doi.org/10.4218/etrij.05.0905.0023
  11. Y.H. Kwon et al., "High-Frequency Characteristics of 40 Gb/s Electroabsorption Modulator-Integrated DFB Lasers: Effect of Traveling-Wave Electrode and Tilted Facet," Proc. Asia-Pacific Microwave Conference, 2007.

Cited by

  1. Effects of Asymmetric Grating Structures on Output Efficiency and Single Longitudinal Mode Operation in $\lambda/4$-Shifted DFB Laser vol.47, pp.9, 2009, https://doi.org/10.1109/jqe.2011.2160617
  2. Electroabsorption Modulated Laser With High Immunity to Residual Facet Reflection vol.48, pp.9, 2009, https://doi.org/10.1109/jqe.2012.2206799
  3. Improvement of modulation bandwidth in electroabsorption-modulated laser by utilizing the resonance property in bonding wire. vol.20, pp.11, 2009, https://doi.org/10.1364/oe.20.011806
  4. A Cost-Effective 40-Gb/s ROSA Module Employing Compact TO-CAN Package vol.35, pp.1, 2013, https://doi.org/10.4218/etrij.13.1812.0115
  5. Proposal and Analysis of Distributed Reflector-Laser Diode Integrated with an Electroabsorption Modulator vol.35, pp.3, 2009, https://doi.org/10.4218/etrij.13.0112.0305
  6. A cost-effective 25-Gb/s EML TOSA using all-in-one FPCB wiring and metal optical bench vol.21, pp.22, 2009, https://doi.org/10.1364/oe.21.026962
  7. Enhanced Impurity-Free Intermixing Bandgap Engineering for InP-Based Photonic Integrated Circuits vol.31, pp.4, 2014, https://doi.org/10.1088/0256-307x/31/4/044204
  8. Ten-channel InP-based large-scale photonic integrated transmitter fabricated by SAG technology vol.64, pp.None, 2009, https://doi.org/10.1016/j.optlastec.2014.04.020
  9. Dynamic back-off chain-building scheme based on network state partition vol.59, pp.10, 2009, https://doi.org/10.1117/1.oe.59.10.106103