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A question answering (QA) system can be built using 
multiple QA modules that can individually serve as a QA 
system in and of themselves. This paper proposes a 
learnable, strategy-driven QA model that aims at 
enhancing both efficiency and effectiveness. A strategy is 
learned using a learning-based classification algorithm 
that determines the sequence of QA modules to be invoked 
and decides when to stop invoking additional modules. 
The learned strategy invokes the most suitable QA module 
for a given question and attempts to verify the answer by 
consulting other modules until the level of confidence 
reaches a threshold. In our experiments, our strategy 
learning approach obtained improvement over a simple 
routing approach by 10.5% in effectiveness and 27.2% in 
efficiency. 
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I. Introduction 

Employing multiple question answering (QA) techniques for 
increased accuracy of an answer has been studied in past QA 
research. A naïve approach is to route questions to all the QA 
modules corresponding to the employed techniques as in a 
meta-search. This simply distributes an internally processed 
question to the individual QA modules in parallel and then 
merges the resulting answers. While most multi-technique 
based1) systems [1]-[3] have adopted this straightforward 
strategy, an obvious weakness of this approach is an inefficient 
use of resources, especially with a large number of QA 
modules. 

One can argue that the same answer from multiple sources 
will increase the confidence level [4]-[6]. Depending on the 
type of question and the nature of QA modules, however, this 
type of redundancy may not be necessary. For example, a 
question such as “When was Madam Curie born?” can be 
answered without ambiguity in an encyclopedia-based QA 
system, if an answer exists, because it can be handled by a pre-
constructed knowledge base (KB). Besides, multiple answers 
from multiple QA modules may end up lowering the 
confidence level of the correct answer if a straightforward 
merging method is used. We argue that some redundancy is 
useful for answer verification but should be used more 
judiciously for both efficiency and effectiveness. 

Another approach is to “hard-code” a merging strategy 
manually. When implementing a QA system, the designer has 
to understand the capability of individual QA modules and 
carefully craft the merging strategy for the given modules. This  
                                                               

1) This is sometimes referred to as a “multi-strategy” in the literature, but the word “strategy” 
has a different meaning in this paper. 
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Fig. 1. System architecture. 
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method seeks to approximate domain-specific knowledge and 
identifies combining strategies developed by human users [7], 
[8]. QA systems based on this approach assign a suitable strategy 
for a user question based on some built-in rules or scenarios. 
However, such a QA system with a pre-defined strategy for 
combining the results makes it difficult to adjust to a new 
situation where a new QA technique or module is added. What is 
problematic is not only the initial cost for manual work but also 
the lack of extensibility and flexibility of the QA system.  

This paper proposes a learnable strategy-driven QA 
approach that aims at enhancing both efficiency and 
effectiveness. A strategy is learned to determine the sequence 
of QA modules to be invoked and to decide when to stop 
invoking additional modules. The learned strategy invokes the 
most suitable QA module for a given question and attempts to 
verify the answers by consulting other modules. 

II. Strategy-Driven QA 

1. Overview 

A strategy-driven QA system is assumed to have multiple 
QA modules as in the system shown in Fig. 1, which consists 
of six different modules. Given a question, the system 
determines a strategy to predict which QA modules are likely 
to find answers. The QA modules are then invoked 
sequentially to extract and verify the answers and to boost their 
confidence values if possible. 

A user question in the form of natural language is entered 
into the system and analyzed by the question analysis 
component, which employs various linguistic analysis 
techniques, such as POS tagging, chunking, answer type (AT) 
tagging [9], and some semantic analysis, such as word sense 
disambiguation [10]. An internal question generated by the 
question analysis component has the following form: 

Q = <AF, AT, QT, AS>, 
where AF is the expected answer format, AT is the expected 
answer type, QT is the theme of the question, and AS is the 
information related to the expected answer source or QA 
module from which the answer is to be found. 

• The answer format (AF) of a question is determined to be 
one of these four types: a single, multiple, descriptive, or 
yes/no question. For example, single is the AF value in the 
question “Who killed President Kennedy?.” 

• There are 147 fine-grained ATs organized in a hierarchical 
structure with 15 nodes at the level directly below the root, 
each of which has two to four lower levels [9]. The AT gives 
information about the type of the entity being sought [11]. 
The sub-type/super-type relations among the ATs give 
flexibility in matching. For the preceding example, the AT 
would be “people” because “who” can be matched with 
“president” in a passage.  

• A question theme (QT) has two parts: a target and a focus. 
The target of a question is the object or event that the 
question is about, and the focus is the property being sought 
by the question. In the example above, the target is “J. F. 
Kennedy” and the focus is “killer.”  

• The answer source (AS) of a question indicates the most 
likely source (QA module) from which an answer can be 
found, which is determined based on the other traits of the 
question (AF, AT, and QT). It also contains some detailed 
information about what should be sought in the QA module. 
For example, “How can we prevent a cold?” and “How can 
we cure a cold?” are analyzed for an answer by the 
descriptive QA module but with additional information 
showing that the answer must be a method for something. 

Among the four elements, AF can be determined relatively 
easily with the semantic class of the word after the interrogative 
in a question. AT, which is trickier to find, is determined by a 
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hybrid classifier which combines maximum-entropy (ME)-
based [9] and rule-based methods. The machine-learning-based 
method alone with relatively simple linguistic features was not 
sufficient to catch subtle nuances in Korean questions, 
necessitating the rule-based method that primarily relies on 
1,113 lexico-semantic patterns (LSPs) [12] which we created 
manually. To determine QT, we devised a method that helps 
matching lexically different expressions by referring to a 
lexical database called the Korean Lexical Concept Net for 
Nouns (LCNN), which was manually constructed [11]. 
Lexically different predicates can be also matched by referring 
to the Korean Lexical Concept Net for Verbs (LCNV) [11]. AS 
is determined by the parse tree of a sentence, together with the 
three other elements of the question, AF, AT, and QT, which 
themselves are obtained from the same parse structure. To do 
this, we defined more than 1,500 patterns (for example, 161 
patterns for superlative questions) organized into templates. 

The strategy selection and execution component selects a 
strategy based on the internal query, invokes one or more QA 
modules depending on whether the calculated evidence for 
each answer candidate is strong enough, and finalizes the 
answer by incorporating answers and their evidence values 
returned from multiple QA modules if necessary. 

The performance of the strategy-driven QA depends heavily 
on the accuracy of the question analysis because a strategy is 
selected based on the AS of the analysis result, which 
determines the QA module to be invoked first. Invoking more 
than one module can compensate any possible errors in the 
question analysis and in the answers from a QA module. In 
other words, answers from the first QA module are verified, 
and their confidence values are boosted if appropriate. 

The answer annotation component builds heterogeneous 
answer bases for multiple QA modules: a learning-based 
method for a knowledge-based QA, a template-based method 
for a superlative QA, a sentence-pattern-based method for a list 
QA and descriptive QA, and a traditional statistical method for 
a general QA [13]. 

2. Multiple QA Modules 

Multiple QA modules are tailored to various answer classes 
that are identifiable from documents. A new module that can be 
added as a new QA technique is developed for questions 
requiring a different answer class. While an AT refers to a 
named entity type being asked for in a question, “answer 
classes” are used to make a distinction among different traits of 
the answers, such as record, list, description, and general 
answer classes. In the current implementation, the QA modules 
represent six different answer classes. 

In our document collection, unstructured text and 

structured/semi-structured data are mixed. Many sentences that 
appear there have particular structural patterns. Using 
information extraction (IE) techniques, these answers can be 
pre-acquired. We defined these answers as knowledgebase 
answer units (KAUs). For the second type, we focused on 
stereotyped sentences written in a Guinness Book style. 
Sentences including record information, such as “Mt. Everest 
was first climbed by Edmund Hillary,” generally have specific 
words such as “first” which indicate that the sentence is a 
superlative sentence. We defined these answers as record 
answer units (RAUs). The example sentence, “Canada’s 
official languages are English and French,” is a chunk-type of 
list answer with parallel phrases. We defined this type of 
answer as list answer units (LAUs).  

Another typical sentence type is the descriptive sentence, 
such as “A tsunami is a large wave, often caused by an 
earthquake” (X is Y). Because a corpus such as an 
encyclopedia or Wikipedia contains facts about many different 
subjects, or explains one particular subject in detail, there are 
many sentences that present definitions such as “X is Y.” On 
the other hand, some sentences describe the process of a special 
event (e.g., World War I), so that they consist of particular 
syntactic structures (5W1H) similar to those found in news 
documents. We defined these descriptive sentences as 
descriptive answer units (DAUs). The other types are the 
general answer units (GAUs) and passage retrieval. These 
answers are retrieved in real-time based on the similarity 
calculation when a user question is entered, and are different 
from other answers. 

While QA modules are complementary to each other in 
providing answers of different types, their answer spaces are 
not completely disjointed. For example, some factoid answers 
are found both in KAUs and GAUs. In other words, the GAU 
index is general enough to include terms in the KAU. This 
redundancy is a catalyst for answer verification by which 
answers from different modules boost their confidence levels 
among themselves. 

III. Strategy Selection and Execution 

Our QA framework using a learnable strategy makes use of a 
number of independent QA modules employing different 
answer finding methods. Each QA module in our system 
except a general QA is tailored to an answer class determined 
primarily by extractable and identifiable answers from 
documents, and by the nature of questions collected from the 
users. A strategy that determines the QA modules to be invoked 
when finding an answer is selected based on several factors 
such as the question’s expected AF, AT, and AS corresponding 
to the expected answer class. 



 

422   Hyo-Jung Oh et al. ETRI Journal, Volume 31, Number 4, August 2009 

 

Fig. 2. Flow diagram of answer generation. 
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As shown in Fig. 2, the flow of strategy-driven QA proceeds  
as follows. First, a user question is analyzed in order to select 
an appropriate strategy consisting of a sequence of QA 
modules and associated threshold values. Then, the QA 
modules are invoked in sequence as in the strategy until the 
stopping condition is satisfied. Since the first QA module is 
where the expected answer class of the query is sought, the QA 
modules invoked later play a role of verifying and boosting the 
confidence levels of the answers identified by the first QA 
module. At the second iteration, the answers from the first QA 
module and those from the second QA module are merged to 
produce a new ranked list of answers, and the invocation of a 
third QA module, if any, plays the role of verification and 
boosting. This process goes on until the confidence level of the 
top-ranked answer exceeds the threshold associated with the 
first QA module, or until there is no more QA module to be 
invoked in the strategy, whichever comes first. 

More precisely, once a strategy is selected, an internal 
question generated by the question analysis can be represented 
as the sequence  

<q1, q2,…, qk>, 
where k is the number of QA modules in the sequence of the 
particular strategy. Each qi is in the form appropriate for the i-th 
QA module. When a ranked list of answers is returned from the 
i-th QA module, it is merged with the combined ranked list of 
answers up to the (i-1)th QA module, Ai-1 = <ai-1,1, ai-1,2,…, ai-1,m>, 
to produce a new ranked list, Ai = <ai,1, ai,2,…, ai,n>, where ai,j is 
the confidence value for the j-th answer returned by the i-th QA 
module. Since the two lists are merged, n≧m holds. The 
confidence value of an answer for a combined answer list is 
computed by first normalizing the values in Ai: 

ai,j = ai,j / max Ai-1, 
and by updating the confidence value for the answer that exists  

Table 1. Learned strategy. 

Answer 
type 

Answer 
format 

Answer 
source Strategy 

None General QA + passage retrieval 

KB KB QA  general QA + passage 
retrieval Single 

Superlative Record QA  general QA + 
passage retrieval 

146 
single

Multiple None List QA + general QA + passage 
retrieval 

Definition Descriptive QA (definition) 
KB QA  passage retrieval 

Reason
Desc. QA (reason) desc. QA 
(objective)  desc. QA function 

 passage retrieval 10 desc. Descriptive

Method
Descriptive QA (method) 
Desc. QA (definition) Passage 
retrieval ... 

 

in both Ai and Ai-1: 
ai,j = ai-1,j + ai,,j / 2. 

Since our strategies are created with a stipulation that the 
answers from the earlier invocation in the sequence should be 
more respected (see section IV for details), the algorithm is 
called boosting. The boosting process basically reinforces the 
evidence of the answers already returned by a previously 
invoked QA module, although a new answer may be chosen as 
the top-ranked answer in the process. The answer verification 
and confidence boosting schemes are reflected in the 
normalization of the answers in Ai, and in the reduction of the 
confidence values of the common answers both in Ai and Ai-1 
by a half. 

Table 1 shows an example of the learned strategies. The “ ” 
symbol indicates the order of QA module invocations. Given 
two QA modules, QA1 and QA2, QA1  QA2 shows that QA1 

and QA2 need to be invoked in sequence, whereas QA1+ QA2 
indicates they are to be processed in parallel. If a question is 
determined to be answered by the KB QA module (the answer 
source being KB), the question is sent to the KB QA module 
first, and the five top-ranked answers are returned. If the top-
ranked answer’s confidence value computed by the module 
exceeds a predetermined threshold in the strategy, the answer 
becomes the final one. Otherwise, the results from the general 
QA module and the passage retrieval are merged and re-ranked 
for answer confidence boosting.  

IV. Strategy Learning 

Our main motivation for learning strategies for different 
types of questions, as opposed to manually constructing rules 
for selecting QA modules for a particular type of an AS of a 
question, is three-fold. First, selecting a single QA module for a  
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Fig. 3. Pseudo-code of the learning algorithm. 

Input: training a set of n <question, answer> pairs m QA 
modules 

Initialize (preparation):  
1. Build an m × n matrix whose element is a list of five

answers returned from a QA module for a question.  
2. Divide the matrix into mni × m matrices (Mi’s), each 

corresponding to the subset of ni questions whose AS
values are equal to a QA module.  

Begin 
Do for I =1, 2,…,m (i.e. for each AS using MI) 

[Order QA modules and determine thresholds for
questions of each AS type] 

Do for J=1, 2,…,m  
1. Evaluate each QA model 
2. Order QA modules 
3. Compute threshold for each QA module 

End 

 
 
given question based on its AS value is not reliable because the 
question analysis component does not always select the best 
QA module, and the best QA module selected may not be self-
sufficient to return the correct answer. Second, routing a 
question to all the available QA modules is neither efficient nor 
effective because some modules may end up providing an 
incorrect answer. Finally, while handcrafting a set of rules for 
selecting a sequence of QA modules is possible, it would be 
difficult to develop rules for predicting when to stop invoking 
additional QA modules and for combining pieces of evidence 
from different modules in a principled way.  

If the learning task had been simply to build a classifier 
which maps a question to the most appropriate QA module or a 
ranked a list of modules, we could have employed one of the 
existing classification methods such as ME [10] or supported 
vector machine (SVM) [14]. However, it was not clear how a 
classification algorithm could be extended to include the task 
of threshold value setting for the sequence of selected QA 
modules, so this required us to devise a new algorithm. 

For strategy learning, we used 260 pairs of training data, 
which were part of the entire set of 811 <question, answer> of 
various sorts in terms of answer sources and difficulty levels.  

The following is an example of a <question, answer> pair: 

<Original Q> Who is the inventor of the periodic law?  
<Alt_Q > Name the creator of the periodic law  
<Answer> 
 <Ans> Dmitri Mendeleyev </Ans> 
 <A_type> Person </A_type> 
</Answer> 

The pseudo-code for this strategy-learning algorithm is given 
in Fig. 3. In describing the algorithm, we assume 260 
question/answer pairs in the training set and six QA modules 

without loss of generality. 

1. Preparation 

Each query in the training set is sent to all the QA modules to 
obtain the top five answers from each module. As a result, we 
can build a 6 × 260 matrix where an element is a list of five 
answers returned from one of the six QA modules.  

This matrix can be divided into six small matrices, Mi, based 
on the AS value of each question. Let n1, n2,…, n6 be the 
number of questions in each matrix, where ni is the number of 
questions determined to have the i-th QA module as the AS 
value:  

1,1 1,2 1,6

2,1 2,2 2,6

,1 ,2 ,6

, , ,
, , ,

.

, , ,
i i i

i

n n n

a a a
a a a

M

a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Each column vector Ci,j (i, j = 1, 2,…,6) of Mi represents the 
top five answers for all the questions whose AS values are 
equal to the j-th QA module. Except for the column j equal to i, 
the answers in the other columns were obtained from QA 
modules that are different from the predicted AS.  

2. Evaluation Step 

We compare Ci,j with the answers in the training set to see 
how good the answers returned from the i-th QA module are. 
For this, we first build a gold standard answer vector Gi from 
the training set 

1 2, , ,
ii nG g g g=< > , 

where
ing is the number of questions that were supposed to be 

sent to the i-th QA module. In essence, a list of answers (in this 
case, five) from Ci,j is compared against an answer from Gi for 
all the elements in the vectors. In the pair-wise comparisons, 
we count the number of lists that contain the corresponding 
answer gk (k = 1, 2,…, ni). This number is a measure of the 
goodness of QA module j, with respect to ni questions whose 
AS values are the i-th QA. When j=i, the module is supposed 
to be invoked first for the ni questions in the training set. We 
compute the goodness value for all six column vectors to order 
the QA modules in terms of the degree to which each module 
satisfies answer Gi. In a normal situation, that is, if the QA 
modules were built reasonably well, the QA module i must 
have the highest goodness value. The QA modules are ordered 
by the goodness values, and this sequence becomes an 
important part of the strategy for the particular AS. 
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3. Setting the Threshold Value 

Given the set of questions Q1 and the first QA module, QA1, 
as well as its goodness value, which is a reflection of the ratio 
between the correct and incorrect answer lists, we compute a 
threshold value to be attached to the module in the strategy. 
We select the lowest and highest confidence values from the 
set of correct answers, CA1, and from the set of incorrect 
answers, IA1, respectively. Our rationale is that in order for an 
answer to be correct, its confidence value must be at least 
larger than the lowest confidence value among those of the 
correct answers in the training set. Similarly, in order for an 
answer to be judged incorrect, its confidence value must be 
smaller than the highest confidence value among those of the 
incorrect answers in the training set. A candidate threshold, t1, 
is then computed as the middle point between the two values. 
Let the lowest confidence value from CA1 and the highest 
value from IA1 be 0.4 and 0.6, respectively. The threshold, t1, 
can be 0.5. 

In applying the strategy for a question, an answer whose 
confidence value is lower than the threshold should not be 
considered correct, and its confidence value should be boosted 
over the threshold with the help of other QA modules if 
possible in order to be accepted as the answer. 

The initial threshold, t1, is changed by considering the next 
QA module, QA2, which can provide additional correct 
answers using its own threshold. By sending the questions with 
incorrect answer lists (Q2) to QA2 and receiving answer lists 
from it, we create the same situation with QA1. The answers 
can be partitioned into correct and incorrect sets of lists, CA2 
and IA2, the lowest and highest confidence values chosen, and 
the middle point obtained as threshold t2. With this last example, 
let the lowest confidence value from CA2 and the highest value 
from IA2 be 0.5 and 0.6, respectively. The second threshold, t2, 
can be 0.55. The only exception is that it is normalized as 
follows: 

t2  t2 * (1 – t1). 

Then, t2 is added to t1 to produce a new t1, making it tougher to 
exceed in an actual QA session. Having produced a new t1, CA1 
is reexamined to form new sets of correct and incorrect answer 
lists, the lowest and highest values chosen, and the middle 
point obtained as a new threshold.  

This process of boosting the threshold continues until there is 
no change in the threshold value or no more QA modules to be 
considered to finally set the threshold. By raising the threshold 
for a QA module using the normalized confidence values of the 
answers from the next QA module, a smaller number of 
answers can be returned from the first module in a QA session, 
which makes the returned answers more reliable. An answer 
whose confidence value is smaller than the threshold can be 

accepted if it is also returned by one of the next QA modules, 
and its confidence value is boosted. In essence, boosting a 
threshold value means that an answer must have a high enough 
confidence value from the first module or receive support from 
other modules. 

Using t2 as the first threshold for QA2, the same iterative steps 
are applied to produce the final threshold for the module using 
the normalized confidence values of the answers from QA3. 
The same process is applied for t3 and so on. Note that the 
threshold values for new QA modules get smaller as they are 
added to the strategy, which increases the chance for later 
modules to return answers easily and hence support the 
previously extracted answers if they are also extracted again. 

V. Evaluation and Analysis 

1. Experimental Setup 

From the outset of this research [13], our goal was to build a 
QA system that can handle a variety of types of questions and 
answers. Based on our analysis of 1,485 questions of various 
types collected from real users and their answers from the Web 
and an encyclopedia, we found that over 80% of the answers 
were obtainable from the encyclopedia, while the Web answers 
were sometimes contradictive among themselves and not 
always confirmative. Moreover, the encyclopedia answers 
were richer with fuller information in the articles concentrated 
on a topic. As such, we chose to use the Pascaltm Encyclopedia 
(http://www.epascal.co.kr), currently consisting of 100,373 
entries (articles) and 1,017,807 sentences belonging to 14 
domains, such as “Person,” “Art,” and “Science.” The 
reliability and balanced diversity of information in the 
encyclopedia were deemed desirable for testing the proposed 
QA framework utilizing multiple QA modules.  

For effectiveness comparisons, we employed a mean 
reciprocal rank (MRR) [15]. We also used precision, recall, 
and F-score with the well-known “top-5” measure, which 
considers whether a correct nugget is found in the top 5 
answers. Like the TREC QA track [16], we have constructed 
various levels of question/answer types. A total of 311 
question/answer pairs were used for building and tuning the 
system, and an additional 500 pairs were used for evaluation 
[13]. 

2. Experiment with Six QA Methods 

With the goal of evaluating the proposed strategy-driven QA 
method, six cases were examined: (i) a traditional QA using 
general indexing and passage retrieval; (ii) one-best individual 
QA where a question was sent to the most appropriate QA 
module only; (iii) one-best QA with the traditional QA as a  
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Table 2. Overall comparisons. 

Improvement (%) over 
 # of question # of response # of correct Precision Recall F-score MRR-5 

(i) (ii) (iii) (iv) (v)

(i) Traditional 500 401 286 0.713 0.572 0.635 0.507      

(ii) One-best 500 407 356 0.875 0.712 0.785 0.632 24.7     
(iii) One-best+ 

traditional 500 480 388 0.808 0.776 0.792 0.668 31.7 5.7    

500 500 395 0.790 0.790 0.790 0.684 35.0 8.2 2.5   (iv) Simple 
routing Response time 2333.1 s (4.6662/question)      

500 495 397 0.802 0.794 0.798 0.688 35.7 8.9 3.1 0.6  (v) Manually 
combined Response time 2142.3 s (4.2846/question)    8.91  

500 483 422 0.874 0.844 0.859 0.756 49.1 19.6 13.2 10.5 9.9(vi) Strategy-
driven Response time 1834.1 s (3.6682/question)    27.2 16.8

 

backup; (iv) simple routing QA where a question was routed to 
all the available QA modules and the answers were combined; 
(v) a manual combination of the available QA modules; and 
(vi) strategy-driven QA, the proposed method.  

To see the value of the learned strategies, we optimized not 
only the four different QA methods (traditional, one-best, simple 
routing, and the strategy-driven) but also individual QA modules. 
The traditional QA used only statistical retrieval methods, 
namely, general QA and passage retrieval. The one-best QA 
system selects the best AS for the given question among multiple 
QA engines and then finds candidate answers in the particular 
QA module. Since the answer selection method applied to this 
case is exactly the same as that for the strategy-driven QA, the 
only difference is that one-best indivisual QA does not use any 
other QA modules than the best one. One-best with a traditional 
QA uses the traditional method as a backup to be used when the 
one-best method does not return any answer. 

In the simple routing QA, all candidate answers from six QA 
modules were merged into a single ranked list with a linear 
combination of the weights after the confidence values were 
normalized so that all the answer lists would have the same 
confidence value ranges. To set the best situation for 
combination parameters, we used 571 QA pairs (260 for 
training as in section 4 and 311 for tuning) while assuming the 
six individual QA modules were optimized. 

To see the value of automatic strategy learning, we created a 
case where the invocation sequence and the combination 
method were all handcrafted. The resulting rules define which 
QA modules should be combined selectively for each question 
type, rather than just sending the question to all the QA 
modules as in the simple routing case. For example, the 
superlative question should combine the superlative QA, the 
KB QA, and the general QA. The candidate answers were  

 

Fig. 4. Performance changes. 
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merged by the same method as in the simple routing QA. 

3. Experimental Results 

As shown in Table 2, the final MRR values for the traditional 
(baseline) QA, one-best individual QA, one-best with a 
traditional QA backup, simple routing, manually crafted 
strategy, and strategy-driven QA are, 0.507, 0.632, 0.668, 0.684, 
0.688, and 0.756, respectively. Our proposed strategy-driven 
method also shows the highest overall performance in both 
precision (0.874) and recall (0.844). There are 93 questions for 
which no answer was given from the one-best QA (only 407 
responses as shown in Table 2). With the traditional QA backup, 
73 questions receive candidate answers and 32 answers are 
correct among them. This demonstrates that combining 
multiple QAs (even only two modules) can achieve a better 
result. 

In comparison with the simple routing method, which also 
makes use of the same multiple QA modules, the proposed 
method based on the strategy learning algorithm shows 
improvement of 10.5% (0.687 to 0.756 MRR) for effectiveness 
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and 27.2% (4.667 s to 3.643 s per question) for efficiency. 
These results indicate that by executing only necessary QA 
modules with corresponding threshold values, we cannot only 
save time but also provide better answers, suppressing 
erroneous ones. Even compared with the manually crafted 
strategy-driven QA, our QA based on automatically learned 
strategies shows better results in both effectiveness (0.688 to 
0.756 MRR) and efficiency (4.2846 s to 3.646 s per question). 
Needless to say, the cost of building a system manually is 
much higher than that of our learning method. 

Meanwhile, the manually crafted rule-based QA shows a 
slight improvement in accuracy (0.6%, 0.684 to 0.688) over 
simple routing, while efficiency was improved by 8.91% 
(4.662 s to 4.284 s). However, the handcraft rules have to be 
revised when additional QA modules are introduced, which 
incurs much more additional cost.  

In question answering, it is critical not to return incorrect 
answers to a user since returning an incorrect answer is usually 
worse than not returning any answer at all. Although it is 
challenging to explicitly recognize that there is no answer for a 
question, our proposed method ended up returning only 483 
answers out of 500 (not returning 17) by enforcing the 
threshold values in the learned policy and not lowering the 
precision and recall values compared to the simple routing 
method. The traditional QA returned only 286 answers out of 
500 questions, but the hard cut-off value across the board 
ended up reducing the recall value considerably to 0.572, while 
the precision was reasonably high.  

For statistical significance of the results, we employed a 
paired t-test that assesses whether the means of two groups are 
statistically different from each other. The pair-wise t-test 
results for the MRR scores confirmed that the differences are 
statistically significant (p<0.0001). 

Figure 4 shows how the effectiveness changed as we varied 
the size of the training data. As expected, as the training data 
increased, the performance improved quite dramatically from 
50 to well beyond 150 <question, answer> pairs. We decided 
to stop adding training data when we saw a decrease in 
performance beyond 260. 

4. Error Analysis 

Since there are several components involved and several QA 
modules in answering a question, an error (incorrect answer) 
should be traced back to identify the very first place where the 
error occurred, that is, the cause of the error [17]. Table 3 
defines possible sources of errors or factors in the system.  

Based on the factors in Table 3, errors occurring in the 
experiment were analyzed. Table 4 shows the sources of 78 
errors of the strategy-driven QA. Two of the four modules  

Table 3. Error analysis factors. 

Component Error type Description 

Q1 
Linguistic analysis (POS tagging, 
parsing, WSD, etc.) 

Q2 
Answer format analysis (single, 
multiple, descriptive, yes/no) 

Q3 
Expected answer type analysis 
(location, date, etc.) 

Q4 Question target detection 

Q5 
Semantic expansion of question theme 
(for example, predicate) 

Question 
analysis 

Q6 
Answer source analysis  
(KBQ, superlative Q, etc.) 

Answer 
annotation A1 

Answer indexing (including 
knowledgebase construction process) 

Answer 
retrieval R1 

Actual retrieval (answer retrieval, 
passage retrieval, etc.) 

S1 Set 5 as the cut-off value Answer 
selection S2 Confidence value boosting 

Table 4. Error distribution in strategy-driven QA. 

Component # of error (%) Error type # of Q (%) 

Q1 1 (1.28)

Q2 4 (5.13)

Q3 9 (11.54)

Q4 5 (6.41)

Q5 3 (3.85)

Question analysis 24 (30.77) 

Q6 2 (2.56)
Answer 

annotation 14 (17.95) A1 14 (17.95)

Answer retrieval 2 (2.56) R1 2 (2.56)

S1 9 (11.53)
Answer selection 38 (48.72) 

S2 29 (37.18)

Total 78 (100)

 

account for more than 80% (30.77% in the question analysis 
plus 48.72% in the answer selection) of the errors. The largest 
proportion of the errors was due to inaccuracy in the answer 
selection (48.72%), or more precisely, in the confidence value 
boosting (S2). Considering that only two errors occurred in the 
answer retrieval (R1), it is assumed that most candidate 
answers were retrieved. Instead, the cut-off value of 5 
(meaning that only the top five documents were returned) was 
too small to include all the correct answers, aside from the 
errors incurred by the boosting process. In the question analysis 
module, the most critical factor was Q3, a failure in identifying 
appropriate expected answer types. 
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VI. Conclusion 

The main motivation behind this research was to identify the 
best possible sequence of QA modules for an individual query. 
Instead of sending a question to all the modules and combining 
the results in an ad hoc way, we proposed a learning algorithm 
by which a set of strategies are learned for different types of 
questions. A strategy is a sequence of QA modules to be invoked 
and corresponding thresholds by which a decision is made on 
whether an answer is to be accepted. If no answer is accepted, 
the question is sent to the next module in the sequence. The 
confidence value from the first QA module is then boosted by 
the confidence value returned from the second module and so on. 
A novel method for strategy learning was also introduced. 

To show the efficacy of the proposed model, we conducted 
experiments for four different cases. The proposed method 
obtained an improvement over the simple routing approach of 
10.5% in effectiveness and 27.2% in efficiency. Even 
compared with manually built QA invocation rules, our 
strategy-learning-based QA shows better results in both 
effectiveness and efficiency. 

A detailed error analysis shows that most errors were 
attributed to the question analysis and answer selection 
components. In particular, the expected answer type analysis 
for a question presents a critical problem because it influences 
the strategy selection process. We plan to improve the answer 
type classification method using hybrid machine learning 
algorithms. In addition, to overcome missing candidate 
answers in the answer boosting process, a dynamic cut-off 
scheme and a different boosting method will be developed.  
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