

ETRI Journal, Volume 31, Number 4, August 2009 © 2009 Hyo-Jung Oh et al. 419

A question answering (QA) system can be built using
multiple QA modules that can individually serve as a QA
system in and of themselves. This paper proposes a
learnable, strategy-driven QA model that aims at
enhancing both efficiency and effectiveness. A strategy is
learned using a learning-based classification algorithm
that determines the sequence of QA modules to be invoked
and decides when to stop invoking additional modules.
The learned strategy invokes the most suitable QA module
for a given question and attempts to verify the answer by
consulting other modules until the level of confidence
reaches a threshold. In our experiments, our strategy
learning approach obtained improvement over a simple
routing approach by 10.5% in effectiveness and 27.2% in
efficiency.

Keywords: Question answering, machine learning,
strategy learning.

Manuscript received July 10, 2008; revised Apr. 21, 2009; accepted June 9, 2009.
This work was supported in part by the Korea Ministry of Knowledge Economy (MKE)

under Grant No. 2008-S-020-02 and by Brain Korea 21 project sponsored by Ministry of
Education and Human Resources Development, Rep. of Korea.

Hyo-Jung Oh (phone: +82 42 860 5405, email: ohj@etri.re.kr) and Myung-Gil Jang (email:
mgjang@etri.re.kr) are with Software & Content Research Laboratory, Daejeon, Rep. of Korea.

Sung Hyon Myaeng (email: myaeng@kaist.ac.kr) is with Korea Advanced Institute of
Science and Technology (KAIST), Daejeon, Rep. of Korea.

doi:10.4218/etrij.09.0108.0388

I. Introduction

Employing multiple question answering (QA) techniques for
increased accuracy of an answer has been studied in past QA
research. A naïve approach is to route questions to all the QA
modules corresponding to the employed techniques as in a
meta-search. This simply distributes an internally processed
question to the individual QA modules in parallel and then
merges the resulting answers. While most multi-technique
based1) systems [1]-[3] have adopted this straightforward
strategy, an obvious weakness of this approach is an inefficient
use of resources, especially with a large number of QA
modules.

One can argue that the same answer from multiple sources
will increase the confidence level [4]-[6]. Depending on the
type of question and the nature of QA modules, however, this
type of redundancy may not be necessary. For example, a
question such as “When was Madam Curie born?” can be
answered without ambiguity in an encyclopedia-based QA
system, if an answer exists, because it can be handled by a pre-
constructed knowledge base (KB). Besides, multiple answers
from multiple QA modules may end up lowering the
confidence level of the correct answer if a straightforward
merging method is used. We argue that some redundancy is
useful for answer verification but should be used more
judiciously for both efficiency and effectiveness.

Another approach is to “hard-code” a merging strategy
manually. When implementing a QA system, the designer has
to understand the capability of individual QA modules and
carefully craft the merging strategy for the given modules. This

1) This is sometimes referred to as a “multi-strategy” in the literature, but the word “strategy”
has a different meaning in this paper.

Enhancing Performance with a Learnable Strategy for
 Multiple Question Answering Modules

 Hyo-Jung Oh, Sung Hyon Myaeng, and Myung-Gil Jang

420 Hyo-Jung Oh et al. ETRI Journal, Volume 31, Number 4, August 2009

Fig. 1. System architecture.

Question Question analysis
Answer

annotation

Superlative
QA

Desc. QA KB QA General QA

DAUs

Linguistic analysis

LAUsKAUs RAUs

Multiple QA modules

List QA

GAUs

…

Documents

…

Answer

Passage

Strategy learning Strategy selection & execution

method seeks to approximate domain-specific knowledge and
identifies combining strategies developed by human users [7],
[8]. QA systems based on this approach assign a suitable strategy
for a user question based on some built-in rules or scenarios.
However, such a QA system with a pre-defined strategy for
combining the results makes it difficult to adjust to a new
situation where a new QA technique or module is added. What is
problematic is not only the initial cost for manual work but also
the lack of extensibility and flexibility of the QA system.

This paper proposes a learnable strategy-driven QA
approach that aims at enhancing both efficiency and
effectiveness. A strategy is learned to determine the sequence
of QA modules to be invoked and to decide when to stop
invoking additional modules. The learned strategy invokes the
most suitable QA module for a given question and attempts to
verify the answers by consulting other modules.

II. Strategy-Driven QA

1. Overview

A strategy-driven QA system is assumed to have multiple
QA modules as in the system shown in Fig. 1, which consists
of six different modules. Given a question, the system
determines a strategy to predict which QA modules are likely
to find answers. The QA modules are then invoked
sequentially to extract and verify the answers and to boost their
confidence values if possible.

A user question in the form of natural language is entered
into the system and analyzed by the question analysis
component, which employs various linguistic analysis
techniques, such as POS tagging, chunking, answer type (AT)
tagging [9], and some semantic analysis, such as word sense
disambiguation [10]. An internal question generated by the
question analysis component has the following form:

Q = <AF, AT, QT, AS>,
where AF is the expected answer format, AT is the expected
answer type, QT is the theme of the question, and AS is the
information related to the expected answer source or QA
module from which the answer is to be found.

• The answer format (AF) of a question is determined to be
one of these four types: a single, multiple, descriptive, or
yes/no question. For example, single is the AF value in the
question “Who killed President Kennedy?.”

• There are 147 fine-grained ATs organized in a hierarchical
structure with 15 nodes at the level directly below the root,
each of which has two to four lower levels [9]. The AT gives
information about the type of the entity being sought [11].
The sub-type/super-type relations among the ATs give
flexibility in matching. For the preceding example, the AT
would be “people” because “who” can be matched with
“president” in a passage.

• A question theme (QT) has two parts: a target and a focus.
The target of a question is the object or event that the
question is about, and the focus is the property being sought
by the question. In the example above, the target is “J. F.
Kennedy” and the focus is “killer.”

• The answer source (AS) of a question indicates the most
likely source (QA module) from which an answer can be
found, which is determined based on the other traits of the
question (AF, AT, and QT). It also contains some detailed
information about what should be sought in the QA module.
For example, “How can we prevent a cold?” and “How can
we cure a cold?” are analyzed for an answer by the
descriptive QA module but with additional information
showing that the answer must be a method for something.

Among the four elements, AF can be determined relatively
easily with the semantic class of the word after the interrogative
in a question. AT, which is trickier to find, is determined by a

ETRI Journal, Volume 31, Number 4, August 2009 Hyo-Jung Oh et al. 421

hybrid classifier which combines maximum-entropy (ME)-
based [9] and rule-based methods. The machine-learning-based
method alone with relatively simple linguistic features was not
sufficient to catch subtle nuances in Korean questions,
necessitating the rule-based method that primarily relies on
1,113 lexico-semantic patterns (LSPs) [12] which we created
manually. To determine QT, we devised a method that helps
matching lexically different expressions by referring to a
lexical database called the Korean Lexical Concept Net for
Nouns (LCNN), which was manually constructed [11].
Lexically different predicates can be also matched by referring
to the Korean Lexical Concept Net for Verbs (LCNV) [11]. AS
is determined by the parse tree of a sentence, together with the
three other elements of the question, AF, AT, and QT, which
themselves are obtained from the same parse structure. To do
this, we defined more than 1,500 patterns (for example, 161
patterns for superlative questions) organized into templates.

The strategy selection and execution component selects a
strategy based on the internal query, invokes one or more QA
modules depending on whether the calculated evidence for
each answer candidate is strong enough, and finalizes the
answer by incorporating answers and their evidence values
returned from multiple QA modules if necessary.

The performance of the strategy-driven QA depends heavily
on the accuracy of the question analysis because a strategy is
selected based on the AS of the analysis result, which
determines the QA module to be invoked first. Invoking more
than one module can compensate any possible errors in the
question analysis and in the answers from a QA module. In
other words, answers from the first QA module are verified,
and their confidence values are boosted if appropriate.

The answer annotation component builds heterogeneous
answer bases for multiple QA modules: a learning-based
method for a knowledge-based QA, a template-based method
for a superlative QA, a sentence-pattern-based method for a list
QA and descriptive QA, and a traditional statistical method for
a general QA [13].

2. Multiple QA Modules

Multiple QA modules are tailored to various answer classes
that are identifiable from documents. A new module that can be
added as a new QA technique is developed for questions
requiring a different answer class. While an AT refers to a
named entity type being asked for in a question, “answer
classes” are used to make a distinction among different traits of
the answers, such as record, list, description, and general
answer classes. In the current implementation, the QA modules
represent six different answer classes.

In our document collection, unstructured text and

structured/semi-structured data are mixed. Many sentences that
appear there have particular structural patterns. Using
information extraction (IE) techniques, these answers can be
pre-acquired. We defined these answers as knowledgebase
answer units (KAUs). For the second type, we focused on
stereotyped sentences written in a Guinness Book style.
Sentences including record information, such as “Mt. Everest
was first climbed by Edmund Hillary,” generally have specific
words such as “first” which indicate that the sentence is a
superlative sentence. We defined these answers as record
answer units (RAUs). The example sentence, “Canada’s
official languages are English and French,” is a chunk-type of
list answer with parallel phrases. We defined this type of
answer as list answer units (LAUs).

Another typical sentence type is the descriptive sentence,
such as “A tsunami is a large wave, often caused by an
earthquake” (X is Y). Because a corpus such as an
encyclopedia or Wikipedia contains facts about many different
subjects, or explains one particular subject in detail, there are
many sentences that present definitions such as “X is Y.” On
the other hand, some sentences describe the process of a special
event (e.g., World War I), so that they consist of particular
syntactic structures (5W1H) similar to those found in news
documents. We defined these descriptive sentences as
descriptive answer units (DAUs). The other types are the
general answer units (GAUs) and passage retrieval. These
answers are retrieved in real-time based on the similarity
calculation when a user question is entered, and are different
from other answers.

While QA modules are complementary to each other in
providing answers of different types, their answer spaces are
not completely disjointed. For example, some factoid answers
are found both in KAUs and GAUs. In other words, the GAU
index is general enough to include terms in the KAU. This
redundancy is a catalyst for answer verification by which
answers from different modules boost their confidence levels
among themselves.

III. Strategy Selection and Execution

Our QA framework using a learnable strategy makes use of a
number of independent QA modules employing different
answer finding methods. Each QA module in our system
except a general QA is tailored to an answer class determined
primarily by extractable and identifiable answers from
documents, and by the nature of questions collected from the
users. A strategy that determines the QA modules to be invoked
when finding an answer is selected based on several factors
such as the question’s expected AF, AT, and AS corresponding
to the expected answer class.

422 Hyo-Jung Oh et al. ETRI Journal, Volume 31, Number 4, August 2009

Fig. 2. Flow diagram of answer generation.

A >α

Final
answer

Yes

No Boosting

Strategy execution

Question Question analysis

Superlative
QA

Desc.
QA

KB
QA

General
QA

List
QA

Passage
retrieval

Q = < AF, AT, QT, AS >

As shown in Fig. 2, the flow of strategy-driven QA proceeds
as follows. First, a user question is analyzed in order to select
an appropriate strategy consisting of a sequence of QA
modules and associated threshold values. Then, the QA
modules are invoked in sequence as in the strategy until the
stopping condition is satisfied. Since the first QA module is
where the expected answer class of the query is sought, the QA
modules invoked later play a role of verifying and boosting the
confidence levels of the answers identified by the first QA
module. At the second iteration, the answers from the first QA
module and those from the second QA module are merged to
produce a new ranked list of answers, and the invocation of a
third QA module, if any, plays the role of verification and
boosting. This process goes on until the confidence level of the
top-ranked answer exceeds the threshold associated with the
first QA module, or until there is no more QA module to be
invoked in the strategy, whichever comes first.

More precisely, once a strategy is selected, an internal
question generated by the question analysis can be represented
as the sequence

<q1, q2,…, qk>,
where k is the number of QA modules in the sequence of the
particular strategy. Each qi is in the form appropriate for the i-th
QA module. When a ranked list of answers is returned from the
i-th QA module, it is merged with the combined ranked list of
answers up to the (i-1)th QA module, Ai-1 = <ai-1,1, ai-1,2,…, ai-1,m>,
to produce a new ranked list, Ai = <ai,1, ai,2,…, ai,n>, where ai,j is
the confidence value for the j-th answer returned by the i-th QA
module. Since the two lists are merged, n≧m holds. The
confidence value of an answer for a combined answer list is
computed by first normalizing the values in Ai:

ai,j = ai,j / max Ai-1,
and by updating the confidence value for the answer that exists

Table 1. Learned strategy.

Answer
type

Answer
format

Answer
source Strategy

None General QA + passage retrieval

KB KB QA general QA + passage
retrieval Single

Superlative Record QA general QA +
passage retrieval

146
single

Multiple None List QA + general QA + passage
retrieval

Definition Descriptive QA (definition)
KB QA passage retrieval

Reason
Desc. QA (reason) desc. QA
(objective) desc. QA function

 passage retrieval 10 desc. Descriptive

Method
Descriptive QA (method)
Desc. QA (definition) Passage
retrieval ...

in both Ai and Ai-1:
ai,j = ai-1,j + ai,,j / 2.

Since our strategies are created with a stipulation that the
answers from the earlier invocation in the sequence should be
more respected (see section IV for details), the algorithm is
called boosting. The boosting process basically reinforces the
evidence of the answers already returned by a previously
invoked QA module, although a new answer may be chosen as
the top-ranked answer in the process. The answer verification
and confidence boosting schemes are reflected in the
normalization of the answers in Ai, and in the reduction of the
confidence values of the common answers both in Ai and Ai-1
by a half.

Table 1 shows an example of the learned strategies. The “ ”
symbol indicates the order of QA module invocations. Given
two QA modules, QA1 and QA2, QA1 QA2 shows that QA1

and QA2 need to be invoked in sequence, whereas QA1+ QA2
indicates they are to be processed in parallel. If a question is
determined to be answered by the KB QA module (the answer
source being KB), the question is sent to the KB QA module
first, and the five top-ranked answers are returned. If the top-
ranked answer’s confidence value computed by the module
exceeds a predetermined threshold in the strategy, the answer
becomes the final one. Otherwise, the results from the general
QA module and the passage retrieval are merged and re-ranked
for answer confidence boosting.

IV. Strategy Learning

Our main motivation for learning strategies for different
types of questions, as opposed to manually constructing rules
for selecting QA modules for a particular type of an AS of a
question, is three-fold. First, selecting a single QA module for a

ETRI Journal, Volume 31, Number 4, August 2009 Hyo-Jung Oh et al. 423

Fig. 3. Pseudo-code of the learning algorithm.

Input: training a set of n <question, answer> pairs m QA
modules

Initialize (preparation):
1. Build an m × n matrix whose element is a list of five

answers returned from a QA module for a question.
2. Divide the matrix into mni × m matrices (Mi’s), each

corresponding to the subset of ni questions whose AS
values are equal to a QA module.

Begin
Do for I =1, 2,…,m (i.e. for each AS using MI)

[Order QA modules and determine thresholds for
questions of each AS type]

Do for J=1, 2,…,m
1. Evaluate each QA model
2. Order QA modules
3. Compute threshold for each QA module

End

given question based on its AS value is not reliable because the
question analysis component does not always select the best
QA module, and the best QA module selected may not be self-
sufficient to return the correct answer. Second, routing a
question to all the available QA modules is neither efficient nor
effective because some modules may end up providing an
incorrect answer. Finally, while handcrafting a set of rules for
selecting a sequence of QA modules is possible, it would be
difficult to develop rules for predicting when to stop invoking
additional QA modules and for combining pieces of evidence
from different modules in a principled way.

If the learning task had been simply to build a classifier
which maps a question to the most appropriate QA module or a
ranked a list of modules, we could have employed one of the
existing classification methods such as ME [10] or supported
vector machine (SVM) [14]. However, it was not clear how a
classification algorithm could be extended to include the task
of threshold value setting for the sequence of selected QA
modules, so this required us to devise a new algorithm.

For strategy learning, we used 260 pairs of training data,
which were part of the entire set of 811 <question, answer> of
various sorts in terms of answer sources and difficulty levels.

The following is an example of a <question, answer> pair:

<Original Q> Who is the inventor of the periodic law?
<Alt_Q > Name the creator of the periodic law
<Answer>
 <Ans> Dmitri Mendeleyev </Ans>
 <A_type> Person </A_type>
</Answer>

The pseudo-code for this strategy-learning algorithm is given
in Fig. 3. In describing the algorithm, we assume 260
question/answer pairs in the training set and six QA modules

without loss of generality.

1. Preparation

Each query in the training set is sent to all the QA modules to
obtain the top five answers from each module. As a result, we
can build a 6 × 260 matrix where an element is a list of five
answers returned from one of the six QA modules.

This matrix can be divided into six small matrices, Mi, based
on the AS value of each question. Let n1, n2,…, n6 be the
number of questions in each matrix, where ni is the number of
questions determined to have the i-th QA module as the AS
value:

1,1 1,2 1,6

2,1 2,2 2,6

,1 ,2 ,6

, , ,
, , ,

.

, , ,
i i i

i

n n n

a a a
a a a

M

a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Each column vector Ci,j (i, j = 1, 2,…,6) of Mi represents the
top five answers for all the questions whose AS values are
equal to the j-th QA module. Except for the column j equal to i,
the answers in the other columns were obtained from QA
modules that are different from the predicted AS.

2. Evaluation Step

We compare Ci,j with the answers in the training set to see
how good the answers returned from the i-th QA module are.
For this, we first build a gold standard answer vector Gi from
the training set

1 2, , ,
ii nG g g g=< > ,

where
ing is the number of questions that were supposed to be

sent to the i-th QA module. In essence, a list of answers (in this
case, five) from Ci,j is compared against an answer from Gi for
all the elements in the vectors. In the pair-wise comparisons,
we count the number of lists that contain the corresponding
answer gk (k = 1, 2,…, ni). This number is a measure of the
goodness of QA module j, with respect to ni questions whose
AS values are the i-th QA. When j=i, the module is supposed
to be invoked first for the ni questions in the training set. We
compute the goodness value for all six column vectors to order
the QA modules in terms of the degree to which each module
satisfies answer Gi. In a normal situation, that is, if the QA
modules were built reasonably well, the QA module i must
have the highest goodness value. The QA modules are ordered
by the goodness values, and this sequence becomes an
important part of the strategy for the particular AS.

424 Hyo-Jung Oh et al. ETRI Journal, Volume 31, Number 4, August 2009

3. Setting the Threshold Value

Given the set of questions Q1 and the first QA module, QA1,
as well as its goodness value, which is a reflection of the ratio
between the correct and incorrect answer lists, we compute a
threshold value to be attached to the module in the strategy.
We select the lowest and highest confidence values from the
set of correct answers, CA1, and from the set of incorrect
answers, IA1, respectively. Our rationale is that in order for an
answer to be correct, its confidence value must be at least
larger than the lowest confidence value among those of the
correct answers in the training set. Similarly, in order for an
answer to be judged incorrect, its confidence value must be
smaller than the highest confidence value among those of the
incorrect answers in the training set. A candidate threshold, t1,
is then computed as the middle point between the two values.
Let the lowest confidence value from CA1 and the highest
value from IA1 be 0.4 and 0.6, respectively. The threshold, t1,
can be 0.5.

In applying the strategy for a question, an answer whose
confidence value is lower than the threshold should not be
considered correct, and its confidence value should be boosted
over the threshold with the help of other QA modules if
possible in order to be accepted as the answer.

The initial threshold, t1, is changed by considering the next
QA module, QA2, which can provide additional correct
answers using its own threshold. By sending the questions with
incorrect answer lists (Q2) to QA2 and receiving answer lists
from it, we create the same situation with QA1. The answers
can be partitioned into correct and incorrect sets of lists, CA2
and IA2, the lowest and highest confidence values chosen, and
the middle point obtained as threshold t2. With this last example,
let the lowest confidence value from CA2 and the highest value
from IA2 be 0.5 and 0.6, respectively. The second threshold, t2,
can be 0.55. The only exception is that it is normalized as
follows:

t2 t2 * (1 – t1).

Then, t2 is added to t1 to produce a new t1, making it tougher to
exceed in an actual QA session. Having produced a new t1, CA1
is reexamined to form new sets of correct and incorrect answer
lists, the lowest and highest values chosen, and the middle
point obtained as a new threshold.

This process of boosting the threshold continues until there is
no change in the threshold value or no more QA modules to be
considered to finally set the threshold. By raising the threshold
for a QA module using the normalized confidence values of the
answers from the next QA module, a smaller number of
answers can be returned from the first module in a QA session,
which makes the returned answers more reliable. An answer
whose confidence value is smaller than the threshold can be

accepted if it is also returned by one of the next QA modules,
and its confidence value is boosted. In essence, boosting a
threshold value means that an answer must have a high enough
confidence value from the first module or receive support from
other modules.

Using t2 as the first threshold for QA2, the same iterative steps
are applied to produce the final threshold for the module using
the normalized confidence values of the answers from QA3.
The same process is applied for t3 and so on. Note that the
threshold values for new QA modules get smaller as they are
added to the strategy, which increases the chance for later
modules to return answers easily and hence support the
previously extracted answers if they are also extracted again.

V. Evaluation and Analysis

1. Experimental Setup

From the outset of this research [13], our goal was to build a
QA system that can handle a variety of types of questions and
answers. Based on our analysis of 1,485 questions of various
types collected from real users and their answers from the Web
and an encyclopedia, we found that over 80% of the answers
were obtainable from the encyclopedia, while the Web answers
were sometimes contradictive among themselves and not
always confirmative. Moreover, the encyclopedia answers
were richer with fuller information in the articles concentrated
on a topic. As such, we chose to use the Pascaltm Encyclopedia
(http://www.epascal.co.kr), currently consisting of 100,373
entries (articles) and 1,017,807 sentences belonging to 14
domains, such as “Person,” “Art,” and “Science.” The
reliability and balanced diversity of information in the
encyclopedia were deemed desirable for testing the proposed
QA framework utilizing multiple QA modules.

For effectiveness comparisons, we employed a mean
reciprocal rank (MRR) [15]. We also used precision, recall,
and F-score with the well-known “top-5” measure, which
considers whether a correct nugget is found in the top 5
answers. Like the TREC QA track [16], we have constructed
various levels of question/answer types. A total of 311
question/answer pairs were used for building and tuning the
system, and an additional 500 pairs were used for evaluation
[13].

2. Experiment with Six QA Methods

With the goal of evaluating the proposed strategy-driven QA
method, six cases were examined: (i) a traditional QA using
general indexing and passage retrieval; (ii) one-best individual
QA where a question was sent to the most appropriate QA
module only; (iii) one-best QA with the traditional QA as a

ETRI Journal, Volume 31, Number 4, August 2009 Hyo-Jung Oh et al. 425

Table 2. Overall comparisons.

Improvement (%) over
 # of question # of response # of correct Precision Recall F-score MRR-5

(i) (ii) (iii) (iv) (v)

(i) Traditional 500 401 286 0.713 0.572 0.635 0.507

(ii) One-best 500 407 356 0.875 0.712 0.785 0.632 24.7
(iii) One-best+

traditional 500 480 388 0.808 0.776 0.792 0.668 31.7 5.7

500 500 395 0.790 0.790 0.790 0.684 35.0 8.2 2.5 (iv) Simple
routing Response time 2333.1 s (4.6662/question)

500 495 397 0.802 0.794 0.798 0.688 35.7 8.9 3.1 0.6 (v) Manually
combined Response time 2142.3 s (4.2846/question) 8.91

500 483 422 0.874 0.844 0.859 0.756 49.1 19.6 13.2 10.5 9.9(vi) Strategy-
driven Response time 1834.1 s (3.6682/question) 27.2 16.8

backup; (iv) simple routing QA where a question was routed to
all the available QA modules and the answers were combined;
(v) a manual combination of the available QA modules; and
(vi) strategy-driven QA, the proposed method.

To see the value of the learned strategies, we optimized not
only the four different QA methods (traditional, one-best, simple
routing, and the strategy-driven) but also individual QA modules.
The traditional QA used only statistical retrieval methods,
namely, general QA and passage retrieval. The one-best QA
system selects the best AS for the given question among multiple
QA engines and then finds candidate answers in the particular
QA module. Since the answer selection method applied to this
case is exactly the same as that for the strategy-driven QA, the
only difference is that one-best indivisual QA does not use any
other QA modules than the best one. One-best with a traditional
QA uses the traditional method as a backup to be used when the
one-best method does not return any answer.

In the simple routing QA, all candidate answers from six QA
modules were merged into a single ranked list with a linear
combination of the weights after the confidence values were
normalized so that all the answer lists would have the same
confidence value ranges. To set the best situation for
combination parameters, we used 571 QA pairs (260 for
training as in section 4 and 311 for tuning) while assuming the
six individual QA modules were optimized.

To see the value of automatic strategy learning, we created a
case where the invocation sequence and the combination
method were all handcrafted. The resulting rules define which
QA modules should be combined selectively for each question
type, rather than just sending the question to all the QA
modules as in the simple routing case. For example, the
superlative question should combine the superlative QA, the
KB QA, and the general QA. The candidate answers were

Fig. 4. Performance changes.

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

50 150 250 350
Training size (no. of sets)

Pr
ec

is
io

n

Simple routing
Learning strategy planning

260 311

merged by the same method as in the simple routing QA.

3. Experimental Results

As shown in Table 2, the final MRR values for the traditional
(baseline) QA, one-best individual QA, one-best with a
traditional QA backup, simple routing, manually crafted
strategy, and strategy-driven QA are, 0.507, 0.632, 0.668, 0.684,
0.688, and 0.756, respectively. Our proposed strategy-driven
method also shows the highest overall performance in both
precision (0.874) and recall (0.844). There are 93 questions for
which no answer was given from the one-best QA (only 407
responses as shown in Table 2). With the traditional QA backup,
73 questions receive candidate answers and 32 answers are
correct among them. This demonstrates that combining
multiple QAs (even only two modules) can achieve a better
result.

In comparison with the simple routing method, which also
makes use of the same multiple QA modules, the proposed
method based on the strategy learning algorithm shows
improvement of 10.5% (0.687 to 0.756 MRR) for effectiveness

426 Hyo-Jung Oh et al. ETRI Journal, Volume 31, Number 4, August 2009

and 27.2% (4.667 s to 3.643 s per question) for efficiency.
These results indicate that by executing only necessary QA
modules with corresponding threshold values, we cannot only
save time but also provide better answers, suppressing
erroneous ones. Even compared with the manually crafted
strategy-driven QA, our QA based on automatically learned
strategies shows better results in both effectiveness (0.688 to
0.756 MRR) and efficiency (4.2846 s to 3.646 s per question).
Needless to say, the cost of building a system manually is
much higher than that of our learning method.

Meanwhile, the manually crafted rule-based QA shows a
slight improvement in accuracy (0.6%, 0.684 to 0.688) over
simple routing, while efficiency was improved by 8.91%
(4.662 s to 4.284 s). However, the handcraft rules have to be
revised when additional QA modules are introduced, which
incurs much more additional cost.

In question answering, it is critical not to return incorrect
answers to a user since returning an incorrect answer is usually
worse than not returning any answer at all. Although it is
challenging to explicitly recognize that there is no answer for a
question, our proposed method ended up returning only 483
answers out of 500 (not returning 17) by enforcing the
threshold values in the learned policy and not lowering the
precision and recall values compared to the simple routing
method. The traditional QA returned only 286 answers out of
500 questions, but the hard cut-off value across the board
ended up reducing the recall value considerably to 0.572, while
the precision was reasonably high.

For statistical significance of the results, we employed a
paired t-test that assesses whether the means of two groups are
statistically different from each other. The pair-wise t-test
results for the MRR scores confirmed that the differences are
statistically significant (p<0.0001).

Figure 4 shows how the effectiveness changed as we varied
the size of the training data. As expected, as the training data
increased, the performance improved quite dramatically from
50 to well beyond 150 <question, answer> pairs. We decided
to stop adding training data when we saw a decrease in
performance beyond 260.

4. Error Analysis

Since there are several components involved and several QA
modules in answering a question, an error (incorrect answer)
should be traced back to identify the very first place where the
error occurred, that is, the cause of the error [17]. Table 3
defines possible sources of errors or factors in the system.

Based on the factors in Table 3, errors occurring in the
experiment were analyzed. Table 4 shows the sources of 78
errors of the strategy-driven QA. Two of the four modules

Table 3. Error analysis factors.

Component Error type Description

Q1
Linguistic analysis (POS tagging,
parsing, WSD, etc.)

Q2
Answer format analysis (single,
multiple, descriptive, yes/no)

Q3
Expected answer type analysis
(location, date, etc.)

Q4 Question target detection

Q5
Semantic expansion of question theme
(for example, predicate)

Question
analysis

Q6
Answer source analysis
(KBQ, superlative Q, etc.)

Answer
annotation A1

Answer indexing (including
knowledgebase construction process)

Answer
retrieval R1

Actual retrieval (answer retrieval,
passage retrieval, etc.)

S1 Set 5 as the cut-off value Answer
selection S2 Confidence value boosting

Table 4. Error distribution in strategy-driven QA.

Component # of error (%) Error type # of Q (%)

Q1 1 (1.28)

Q2 4 (5.13)

Q3 9 (11.54)

Q4 5 (6.41)

Q5 3 (3.85)

Question analysis 24 (30.77)

Q6 2 (2.56)
Answer

annotation 14 (17.95) A1 14 (17.95)

Answer retrieval 2 (2.56) R1 2 (2.56)

S1 9 (11.53)
Answer selection 38 (48.72)

S2 29 (37.18)

Total 78 (100)

account for more than 80% (30.77% in the question analysis
plus 48.72% in the answer selection) of the errors. The largest
proportion of the errors was due to inaccuracy in the answer
selection (48.72%), or more precisely, in the confidence value
boosting (S2). Considering that only two errors occurred in the
answer retrieval (R1), it is assumed that most candidate
answers were retrieved. Instead, the cut-off value of 5
(meaning that only the top five documents were returned) was
too small to include all the correct answers, aside from the
errors incurred by the boosting process. In the question analysis
module, the most critical factor was Q3, a failure in identifying
appropriate expected answer types.

ETRI Journal, Volume 31, Number 4, August 2009 Hyo-Jung Oh et al. 427

VI. Conclusion

The main motivation behind this research was to identify the
best possible sequence of QA modules for an individual query.
Instead of sending a question to all the modules and combining
the results in an ad hoc way, we proposed a learning algorithm
by which a set of strategies are learned for different types of
questions. A strategy is a sequence of QA modules to be invoked
and corresponding thresholds by which a decision is made on
whether an answer is to be accepted. If no answer is accepted,
the question is sent to the next module in the sequence. The
confidence value from the first QA module is then boosted by
the confidence value returned from the second module and so on.
A novel method for strategy learning was also introduced.

To show the efficacy of the proposed model, we conducted
experiments for four different cases. The proposed method
obtained an improvement over the simple routing approach of
10.5% in effectiveness and 27.2% in efficiency. Even
compared with manually built QA invocation rules, our
strategy-learning-based QA shows better results in both
effectiveness and efficiency.

A detailed error analysis shows that most errors were
attributed to the question analysis and answer selection
components. In particular, the expected answer type analysis
for a question presents a critical problem because it influences
the strategy selection process. We plan to improve the answer
type classification method using hybrid machine learning
algorithms. In addition, to overcome missing candidate
answers in the answer boosting process, a dynamic cut-off
scheme and a different boosting method will be developed.

References

[1] J. Chu-Carroll et al., “A Multi-strategy and Multi-source
Approach to Question Answering,” Proc. 11th Text REtrieval
Conference (TREC-11), 2002, pp. 281-288.

[2] J. Lin and B. Katz, “Question Answering from the Web Using
Knowledge Annotation and Knowledge Mining Techniques,”
Proc. 12th Int. Conf. Information and Knowledge Management,
2003, pp. 116-123.

[3] B. Katz et al., “Answering Multiple Questions on a Topic from
Heterogeneous Resources,” Proc. 13th TREC, 2004.

[4] A. Hickl et al., “Question Answering with LCC’s CHAUCER at
TREC 2006,” Proc. 15th TREC, 2006.

[5] D. Moldovan, M. Bowden, and M. Tatu, “A Temporally-
Enhanced PowerAnswer in TREC 2006,” Proc. 15th TREC,
2006.

[6] E. Nyberg et al., “The JAVELIN Question Answering System at
TREC 2003: A Multi-strategy Approach with Dynamic
Planning,” Proc. 12th TREC, 2003.

[7] A. Hickl et al., “Experiments with Interactive Question Answering
in Complex Scenarios,” Proc. Workshop on the Pragmatics of
Question Answering at HLT/NAACL, 2004, pp. 60-69.

[8] H-J. Oh et al., “An Integration Approach of QA Engines
Depending on Answer-Classes,” Proc. IEEE IRI, 2006, pp. 178-
181.

[9] C.K. Lee et al., “Fine-Grained Named Entity Recognition Using
Conditional Random Fields for Question Answering,” Proc. AIRS,
vol. 4182, 2006, pp. 581-587.

[10] C.K. Lee et al., “A Multi-strategic Concept-Spotting Approach
for Robust Spoken Korean Understanding,” ETRI Journal, vol.
29, no. 2, Apr. 2007, pp. 179-188.

[11] M.R. Choi, J. Hur, and M-G. Jang, “Constructing Korean Lexical
Concept Network for Encyclopedia Question Answering
System,” Proc. IEEE IECON, vol. 3, Nov. 2004, pp. 3115-3119.

[12] P.S. Jacobs, G.R. Krupka, and L.F. Rau, “Lexico-semantic Pattern
Matching as a Companion to Parsing in Text Understanding,”
Proc. Workshop on Speech and Natural Language in HLT
Conference, 1991, pp. 337-341.

[13] H.-J. Oh, Compositional Question Answering with Collaborative
Strategies, PhD dissertation, Information and Communication
Univ. Korea, 2008.

[14] C.K. Lee and M.G. Jang, “Fast Training of Structured SVM
Using Fixed-Threshold Sequential Minimal Optimization,” ETRI
Journal, vol. 31, no. 2, Apr. 2009, pp. 121-128.

[15] E.M. Voorhees, “The TREC-8 Question Answering Track
Report.” Proc. 8th TREC, 1999, pp. 77-82.

[16] J. Lin. “Is Question Answering Better Than Information
Retrieval? A Task-Based Evaluation Framework for Question
Series,” Proc. HLT/NAACL, 2007, pp. 212-219.

[17] D. Moldovan et al., “Performance Issuse and Error Analysis in an
Open-Domain Question Answering System,” ACM Trans.
Information Systems (TOIS), vol. 21, no. 2, 2003, pp. 133-154.

Hyo-Jung Oh received the BS and the MS
degrees in computer science from Chungnam
National University, Daejeon, South Korea, in
1998 and 2000, respectively. She received the
PhD degree in computer science from
Information & Communication University
(ICU) (now KAIST), Daejeon, South Korea, in

2008. Currently she is a senior researcher in Electronics and
Telecommunications Research Institute (ETRI), Daejeon, South Korea.
Her research interests include machine learning, question answering,
and knowledge mining.

428 Hyo-Jung Oh et al. ETRI Journal, Volume 31, Number 4, August 2009

Sung Hyon Myaeng is currently a professor at
Korea Advanced Institute of Science and
Technology (KAIST), Korea. Prior to this
appointment, he was a faculty at Chungnam
National University, Korea, and Syracuse
University, USA, where he was granted tenure.
He earned his MS and PhD from Southern

Methodist University, Texas, USA, in 1985 and 1987, respectively. He
has served on program committees of many international conferences
in the areas of information retrieval, natural language processing, and
digital libraries, including his role as a chair for ACM SIGIR, 2002 and
2008. He is on editorial boards of several international journals,
including ACM Transactions on Asian Information Processing as an
associate editor and Information Processing and Management.
Recently he won an award from Microsoft Research, based on global
competition for the RFP ‘Beyond Search–Semantic Computing and
Internet Economics.’ His research interests include text mining,
information retrieval, natural language semantics, and commonsense
computing.

Myung-Gil Jang received the BS and MS
degrees in computer science from Busan
National University in 1988 and 1990,
respectively. He received the PhD degree in
computer science from Chungnam National
University, Daejeon, South Korea, in 2002.
Currently he is in charge of the Knowledge

Mining Research Team, ETRI, Daejeon, South Korea. His research
interests include natural language, information retrieval, question
answering, and semantic web.

