Effects of Pollen Viability and Pistil Receptivity on Seed Set for Artificial Pollination in Strawberry

딸기 인공 수분시 화분 활력 및 암술의 수정 능력이 결실률에 미치는 영향

  • Kim, Dae-Young (Vegetable Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Yoon, Moo- Kyung (Vegetable Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Do, Kyung-ran (General Service Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Kim, Tae il (Breeding Team, Nonsan Strawberry Experiment Station)
  • 김대영 (국립원예특작과학원 채소과) ;
  • 윤무경 (국립원예특작과학원 채소과) ;
  • 도경란 (국립원예특작과학원 운영지원과) ;
  • 김태일 (충남농업기술원 논산딸기시험장)
  • Received : 2009.12.09
  • Published : 20091200

Abstract

In order to promote the efficiency of strawberry breeding programs, pollen viability of strawberry, 'Seolhyang' was investigated using the fluorochromatic reaction test and seed set under controlled environment. Pistil receptivity was also assessed by hand pollination. Four varieties including 'Maehyang' were used for the test of pistil receptivity with 'Seolhyang' as a pollen parent. Pollen viability remained high for several days under dry conditions as below 33% relative humidity while the greatest loss of viability occurred at 76% relative humidity. The viability was rapidly decreased at high humidity and almost all grains were unviable in 7 days after storage. Pollen viability does not appear to be drastically reduced if the relative humidity is low. Therefore, humidity is more important factor than temperature for the pollen viability in Fragaria${\times}$ananassa. The rate of seed set by hand pollination lasted higher than the average of 77.2% from 2 to 8 days after emasculation when the daily average temperature was around $15^{\circ}C$ in plastic house. It began to decline gradually from 10 days and had decreased dramatically after 12 days except several cultivars. Based on the daily mean accumulated temperature, it is recommended to have an artificial pollination between the range of $45{\sim}140^{\circ}C$ after the emasculation to increase the rate of seed set in strawberry.

저장조건을 달리한 딸기 화분을 FCR Test와 결실률을 바탕으로 하여 화분 활력을 조사하고 암술 주두 활력을 인공수분을 통하여 구명함으로서 딸기 교배 육종시 효율성을 높이고자 하였다. '설향'을 대상으로 화분 활력을 조사하였으며 암술 주두의 수정 능력은 '매향' 등 4품종을 공시하고 화분친은 '설향'을 사용하였다. 딸기 화분은 상대습도 33%이하의 건조한 조건에서는 처리 온도($18^{\circ}C$$22^{\circ}C$)와 관계없이 수일 동안 높은 활력을 유지하였다. 반면 상대습도가 높을수록 화분 활력의 감소가 컸으며 저장한지 7일차에 대부분의 화분이 활력을 상실하여 결실률이 급격히 감소하였고 이러한 경향은 $18^{\circ}C$보다 $22^{\circ}C$저장 조건에서 결실률이 더욱 불량하였다. 즉, 상대습도가 낮은 경우 화분 활력은 크게 감소하지 않았으며, 온도보다는 습도가 화분 활력을 결정하는 중요한 요인으로 작용하는 것으로 판단된다. 암술의 수정 능력은 품종간의 차이가 있었으나 시설 내부 일평균온도가 $15^{\circ}C$내외일때, 제웅 후 2일차부터 8일차까지 평균 77.2%이상으로 높게 유지되었다. 그러나 결실률은 제웅 후 10일차부터 점차 감소하기 시작하여 12일차 이후에는 일부 품종을 제외하고 급격히 감소하였다. 적산온도를 기준으로 하였을 때, 제웅 후 $45{\sim}140^{\circ}C$내외 범위에서 인공수분을 하는 것이 딸기 결실률을 향상 시킬 수 있을 것으로 판단된다.

Keywords

References

  1. Aleemullah M, Haigh AM, Holford P. 2000. Anthesis, anther dehiscence, pistil receptivity and fruit development in the Longum group of Capsicum annuum. Australian J. of Experimental Agriculture 40:755-762 https://doi.org/10.1071/EA99038
  2. Aronne G. 1999. Effects of relative humidity and temperature stress on pollen viability of Cistus incanus and Myrtus communis. Grana 38:364-367 https://doi.org/10.1080/00173130050136154
  3. Aronne G, DeMicco V, Scala M. 2006. Effects of relative humidity and temperature conditions on pollen fluorochromatic reaction of Rosmarinus officinalis L. (Lamiaceae). Protoplasma. 228:127-130 https://doi.org/10.1007/s00709-006-0173-3
  4. Dafni A, Firmage D. 2000. Pollen viability and longevity: practical, ecological and evolutionary implications. Plant Syst. Evol. 222:113-132 https://doi.org/10.1007/BF00984098
  5. Heslop-harrison J, Heslop-harrison Y. 1970. Evaluation of pollen viability by enzymatically induced fluorescence; intracellular hydrolysis of fluorescein diacetate. Stain technology. 45(3):115-120 https://doi.org/10.3109/10520297009085351
  6. Heslop-harrison J, Heslop-harrison Y, Shivanna KR. 1984. The evaluation of pollen quality and a further appraisal of the flourochromatic (FCR) test procedure. Theor. Appl. Gen. 67:367-375 https://doi.org/10.1007/BF00272876
  7. Huang Z, Zhu J, Mu X, Lin J. 2004. Pollen dispersion, pollen viability and pistil receptivity in Leymus chinensis. Annals of Botany. 93:295-301 https://doi.org/10.1093/aob/mch044
  8. Ledesma N, Sugiyama N. 2005. Pollen quality and performance in strawberry plants exposed to high-temperature stress. J. Amer. Soc. Hort. Sci. 130(3):341-347
  9. Leech L, Simpson DW, Whitehouse AB. 2002. Effect of temperature and relative humidity on pollen germination in four strawberry cultivars. Acta Hort. (ISHS) 567:261-263
  10. Nepi M, Pacini E. 1993. Pollination, pollen viability and pistil receptivity in Cucurbita pepo. Annals of Botany. 72:527-536 https://doi.org/10.1006/anbo.1993.1141
  11. KREI (Korea Rural Economic Institute). 2009. Monthly report on Vegetable prospect (November). Seoul, Korea. p.11
  12. Pacini E, Franchi GG, Lisci M, Nepi M. 1997. Pollen viability related to type of pollination in six angiosperm species. Annals of Botany 80:83-87 https://doi.org/10.1006/anbo.1997.0421
  13. Rao GU, Jain A, Shivanna KR. 1992. Effects of high temperature stress on Brassica pollen: Viability, germination and ability to set fruits and seeds. Annals of Botany. 68:193-198
  14. RDA (Rural Development Administration). 2001. Manual for strawberry cultivation. Suwon. p. 35-170
  15. Thomson JD, Rigney LP, Karoly KM, Thomson BA. 1994. Pollen viability, vigor, and competitive ability in Erythronium grandiflorum (Liliaceae). American J. of Botany 81(10):1257-1266 https://doi.org/10.2307/2445401
  16. Winston PW, Bates DH. 1960. Saturated solutions for the control of humidity in biological research. Ecology. 41(1): 232-237 https://doi.org/10.2307/1931961
  17. Zebrowska J. 1995. The viability and storage of strawberry pollen. Plant Breeding 114:469-470 https://doi.org/10.1111/j.1439-0523.1995.tb00837.x