Analysis of Three Dimensional Equal Chanel Angular Pressing by Using the Finite Element Method in Conjunction with the Dislocation Cell Based Constitutive Model

전위 셀 구성모델을 결합한 유한요소법을 이용한 3차원 등통로각압출 공정 해석

  • Yoon, Seung Chae (Research and Development Team Danjin Works, Hyundai HYSCO) ;
  • Kim, Hyoung Seop (Department of Materials Science and Engineering, Pohang University of Science and Technology)
  • 윤승채 (현대하이스코 기술연구소) ;
  • 김형섭 (포항공과대학교 신소재공학과)
  • Received : 2009.05.04
  • Published : 2009.11.25

Abstract

Deformation behavior of pure aluminum during equal channel angular pressing (ECAP) was simulated using a three-dimensional version of the finite element method in conjunction with a constitutive model based on the dislocation density and cell evolution. The three-dimensional finite element analyses for the prediction of microstructural features, such as the variation of the dislocation density and the cell size with the number of ECAP, are reported. The calculated stress and strain and their distributions are also investigated for the route Bc ECAP processed pure aluminum. The results of finite element analyses are found to be in good agreement with experimental results for the dislocation cell size. Due to the accumulation of strain throughout the workpiece and an overall trend to saturation in cell size, a decrease of the difference in cell size with the number of passes (1~4) was predicted.

Keywords

Acknowledgement

Supported by : 과학기술부

References

  1. R. Z. Valiev, R. K. Islamgaliev, and I. V. Alexandrov, Prog. Mater. Sci. 45, 103 (2000) https://doi.org/10.1016/S0079-6425(99)00007-9
  2. R. Z. Valiev and T. G. Langdon, Prog. Mater. Sci. 51, 881 (2006) https://doi.org/10.1016/j.pmatsci.2006.02.003
  3. R. Z. Vaiev, Y. Estrin, Z. Horita, T. G. Langdon, M. J. Zehetbauer, and Y. Zhu, JOM 58, 33 (2006)
  4. Y. L. Choi and S. H. Kim, Met. Mater. Int. 14, 695 (2008) https://doi.org/10.3365/met.mat.2008.12.695
  5. Y. G. Kim, B. C. Hwang, S. H. Lee, C. W. Lee, and D. H. Shin, J. Kor. Inst. Met.& Mater. 46, 545 (2008)
  6. Y. G. Kim , Y. G. Ko, D. H. Shin, C. S. Lee, and S. H. Lee, J. Kor. Inst. Met.& Mater. 46, 563 (2008)
  7. A. V. Nagasekhar and H. S. Kim, Met. Mater. Int. 14, 565 (2008) https://doi.org/10.3365/met.mat.2008.10.565
  8. S. C. Yoon, P. Quang, and H. S. Kim, J. Kor. Inst. Met. & Mater. 46, 144 (2008)
  9. S. C. Yoon, C. H. Bok, S. I. Hong, and H. S. Kim, J. Kor. Inst. Met. & Mater. 45, 473 (2007)
  10. H. S. Kim, M. H. Seo, and S. I. Hong, Mater. Sci. Eng. A 291, 86 (2001) https://doi.org/10.1016/S0921-5093(00)00970-9
  11. H. S. Kim, S. I. Hong, Y. S. Lee, A. A. Dubravina, and I. V. Alexandrov, J. Mater. Process. Tech. 142, 344 (2003)
  12. S. C. Yoon, S. J. Hong, S. I. Hong, and H. S. Kim, Mater. Sci. Eng. A 449-451, 966 (2007) https://doi.org/10.1016/j.msea.2006.01.164
  13. H. S. Kim, Mater. Sci. Eng. A 503, 130 (2009) https://doi.org/10.1016/j.msea.2008.01.100
  14. S. C. Yoon and H. S. Kim, Mater. Sci. Eng. A 490, 438 (2008) https://doi.org/10.1016/j.msea.2008.01.066
  15. H. S. Kim, Mater. Sci. Eng. A 430, 346 (2006) https://doi.org/10.1016/j.msea.2006.05.146
  16. S. C. Yoon, M. H. Seo, and H. S. Kim, Scr. Mater. 55, 159 (2006) https://doi.org/10.1016/j.scriptamat.2006.03.046
  17. S. C. Baik, Y. Estrin, H. S. Kim, and R. J. Hellming, Mater. Sci. Eng. A 351, 86 (2003) https://doi.org/10.1016/S0921-5093(02)00847-X
  18. Y. H. Jang, S. S. Kim, S. Z. Han, C. Y. Lim, and M. Goto, Met. Mater. Int. 14, 171 (2008) https://doi.org/10.3365/met.mat.2008.04.171
  19. M-C. Chen, C-C. Hsieh, and W. Wu, Met. Mater. Int. 13, 201 (2007) https://doi.org/10.1007/BF03027805
  20. S. C. Yoon, Z. Horita, and H. S. Kim, J. Mater. Process. Tech. 201, 32 (2008) https://doi.org/10.1016/j.jmatprotec.2007.11.204
  21. http://nanospd.org
  22. Y. Estrin, L. S. Toth, A. Molinari, and Y. Brechet, Acta Mater. 46, 5509 (1998) https://doi.org/10.1016/S1359-6454(98)00196-7
  23. D. Kuhlmann-Wilsdorf, Mater. Sci. Eng. A 113, 1 (1989) https://doi.org/10.1016/0921-5093(89)90290-6
  24. M. Muller, M. Zehetbauer, A. Borbely, and T. Ungar, Z. Metallk. 86, 827 (1995)
  25. U. F. Kock, J. Eng. Mater. Tech. 98, 76 (1976) https://doi.org/10.1115/1.3443340
  26. F. Yang, A. Saran, and K. Okazaki, J. Mater. Pro. Tech. 166, 71 (2005) https://doi.org/10.1016/j.jmatprotec.2004.06.032
  27. V. M. Segal, Mater. Sci. Eng. A 197, 157 (1995) https://doi.org/10.1016/0921-5093(95)09705-8
  28. Y. Iwahashi, J. Wang, Z. Horita M. Nemoto, and T. G. Langdon, Scr. Mater. 35, 143 (1996) https://doi.org/10.1016/1359-6462(96)00107-8
  29. P. W. J. Mckenzie, R. Lapovok, and Y. Estrin, Acta Mater. 55, 2985 (2007) https://doi.org/10.1016/j.actamat.2006.12.038
  30. W. Q. Cao, A. Godfrey, W. Liu, and Q. Liu, Mater. Lett. 57, 3767 (2003) https://doi.org/10.1016/S0167-577X(03)00176-9