Low Ag 조성의 Sn-0.3Ag-0.7Cu 및 Sn-3.0Ag-0.5Cu 무연솔더 접합부의 열충격 신뢰성

Thermal Shock Reliability of Low Ag Composition Sn-0.3Ag-0.7Cu and Near Eutectic Sn-3.0Ag-0.5Cu Pb-free Solder Joints

  • 홍원식 (전자부품연구원 고장물리연구센터) ;
  • 오철민 (전자부품연구원 고장물리연구센터)
  • Hong, Won Sik (Physics-of-Failure Research Center, Korea Electronics Technology Institute) ;
  • Oh, Chul Min (Physics-of-Failure Research Center, Korea Electronics Technology Institute)
  • 투고 : 2009.09.01
  • 발행 : 2009.12.20

초록

The long-term reliability of Sn-0.3wt%Ag-0.7wt%Cu solder joints was evaluated and compared with Sn-3.0wt%Ag-0.5wt%Cu under thermal shock conditions. Test vehicles were prepared to use Sn-0.3Ag-0.7Cu and Sn-3.0Ag-0.5Cu solder alloys. To compare the shear strength of the solder joints, 0603, 1005, 1608, 2012, 3216 and 4232 multi-layer ceramic chip capacitors were used. A reflow soldering process was utilized in the preparation of the test vehicles involving a FR-4 material-based printed circuit board (PCB). To compare the shear strength degradation following the thermal shock cycles, a thermal shock test was conducted up to 2,000 cycles at temperatures ranging from $-40^{\circ}C$ to $85^{\circ}C$, with a dwell time of 30 min at each temperature. The shear strength of the solder joints of the chip capacitors was measured at every 500 cycles in each case. The intermetallic compounds (IMCs) of the solder joint interfaces werealso analyzed by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The results showed that the reliability of Sn-0.3Ag-0.7Cu solder joints was very close to that of Sn-3.0Ag-0.5Cu. Consequently, it was confirmed that Sn-0.3Ag-0.7Cu solder alloy with a low silver content can be replaced with Sn-3.0Ag-0.5Cu.

키워드

참고문헌

  1. Directive 2002/95/EC of the European Parliament and of the Council, Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment(RoHS), EU(2003)
  2. JEITA, Lead Free Soldering Project, Final Report, Tokyo(2000)
  3. JEITA, Lead Free Soldering Technologies, p. 26-29, Corona Pub., Tokyo (2003)
  4. W. S. Hong and K. B. Kim, Kor. J. Mater. Res. 15, 536(2005) https://doi.org/10.3740/MRSK.2005.15.8.536
  5. K. S. Kim, S. H. Huh, and K. Suganuma, Int. Conf. Electron. Packag., JIEP 89(2002)
  6. J. W. Yoon, S. W. Kim, and S. B. Jung, J. Alloy. Compound. 392, 247 (2005) https://doi.org/10.1016/j.jallcom.2004.09.045
  7. J. W. Yoon, S. W. Kim, and S. B. Jung, J. Alloy. Compound. 391, 82 (2005) https://doi.org/10.1016/j.jallcom.2004.09.001
  8. D. G. Kim., J. W. Kim, J. G. Lee, H. Morib, D. J. Quesnel, and S. B. Jung, J. Alloy. Compound. 395, 80 (2005) https://doi.org/10.1016/j.jallcom.2004.11.038
  9. J. W. Kim, D. G. Kim, W. S. Hong, and S. B. Jung, J. Electron. Mater. 34, 1550 (2005) https://doi.org/10.1007/s11664-005-0164-8
  10. W. S. Hong, Ph. D. Thesis, p. 248-249, Korea Aerospace University, Gyeonggi (2006)
  11. Y. S. Park, Y. M. Kwon, H. Y. Son, J. T. Moon, B. W. Jeong, K. I. Kang, and K. W. Paik, J. Microelectron. Packaging Soc. 14, 27 (2007)
  12. D. W. Suh, D. W. Kim, P. Liu, H. C. Kim, J. A. Weninger, C. M. Kumar, A. Prasad, B. W. Grimsley, and H. B. Tejada, Mater. Sci. Eng. (A) 460-461, 595 (2007) https://doi.org/10.1016/j.msea.2007.01.145
  13. R. H. Dauskardt, M. Lane, Q. Ma, and N. Krishna, Eng. Fract. Mech. 61, 141 (1998) https://doi.org/10.1016/S0013-7944(98)00052-6
  14. M. Lane, R. H. Dauskardt, A. Vainchtein, and H. Gao, J. Mater. Res. 15, 2758 (2000) https://doi.org/10.1557/JMR.2000.0395
  15. W. S. Hong, W. S. Kim, B. S. Song, and K. B. Kim, Kor. J. Mater. Res. 17, 152 (2007) https://doi.org/10.3740/MRSK.2007.17.3.152
  16. W. Engelmaier, The Institute for Interconnecting and Packaging Electronic Circuits, IPC-SM-785, p. 9 (1992)
  17. C. M. Oh, N. C. Park, and W. S. Hong, J. Kor. Inst. Met. & Mater. 46, 80 (2008)