내식성 및 표면경도 향상을 위한 AISI 304L 스테인리스강의 저온 플라즈마질화 프로세스

Low Temperature Plasma Nitriding Process of AISI 304L Austenitic Stainless Steels for Improving Surface Hardness and Corrosion Resistance

  • Lee, In-Sup (Department of Advanced Materials Engineering, Dongeui University)
  • 투고 : 2009.01.10
  • 발행 : 2009.10.25

초록

The effects of processing parameters on the surface properties of the hardened layers processed by the low temperature plasma nitrocarburizing and the low temperature two-step plama treatment (carburizing+nitriding) were investigated. The nitrogen-enriched expanded austenite structure (${\gamma}_N$) or S phase was formed on all of the treated surface. The surface hardness reached up to 1200 $HV_{0.025}$, which is about 5 times higher than that of untreated sample (250 $HV_{0.1}$). The thickness of hardened layer of the low temperature plasma nitrocarburized layer treated at $400^{\circ}C$ for 40 hour was only $15{\mu}m$, while the layer thicknesss in the two-step plama treatment for the 30 hour treatment increased up to about $30{\mu}m$. The surface thickness and hardness increased with increasing treatment temperature and time. In addition, the corrosion resistance was enhanced than untreated samples due to a high concentration of N on the surface. However, higher treatment temperature and longer treatment time resulted in the formation of $Cr_2N$ precipitates, which causes the degradation of corrosion resistance.

키워드

과제정보

연구 과제 주관 기관 : 한국학술진흥재단

참고문헌

  1. Zhao Cheng, C. X. Li, H. Dong, and T. Bell, Surf. & Coat. Tech. 191, 195 (2005) https://doi.org/10.1016/j.surfcoat.2004.03.004
  2. E. Menthe, A. Bulak, J. Olfe, A. Zimmermann, and K.-T. Rie, Surf. & Coat. Tech. 133-1134, 259 (2000) https://doi.org/10.1016/S0257-8972(00)00930-0
  3. H. Dong, P.-Y. Qi, X. Y. Li, and R. J. Liewellyn, Mater. Sci. Eng. 431, 137 (2006) https://doi.org/10.1016/j.msea.2006.05.122
  4. Y. Sun and T. Bell, Wear. 253, 689 (2002) https://doi.org/10.1016/S0043-1648(02)00170-9
  5. I. E. Saklakoglu, N. Saklakogu, K. T. Short, and G. A. Collins, Mater. & Desi. 28, 1657 (2007) https://doi.org/10.1016/j.matdes.2006.02.008
  6. C.-N. Chang and F.-S. Chen, Mater. Chemi. & Phys. 82, 281 (2003) https://doi.org/10.1016/S0254-0584(03)00234-7
  7. F.-S. Chen and C.-N. Chang, Surf. & Coat. Tech. 173, 9 (2003) https://doi.org/10.1016/S0257-8972(02)00842-3
  8. Y. Sun, Mater. Letter. 59, 3410 (2005) https://doi.org/10.1016/j.matlet.2005.06.005
  9. Y. Sun, Mater. Proc. Tech. 168, 189 (2005) https://doi.org/10.1016/j.jmatprotec.2004.10.005
  10. C. Blawert, H. Kalvelage, B. L. Mordike, G. A. Collins, and K. T. Short, Surf. & Coat. Tech. 136, 181 (2001) https://doi.org/10.1016/S0257-8972(00)01050-1
  11. Y. Sun and E. Haruman, Vac. 81, 1 (2006) https://doi.org/10.1016/j.vacuum.2006.03.003
  12. Insup Lee, J. Kor. Inst. Met. & Mater. 46, 357 (2008)