The Effect of Substrate Surface Roughness on In-Situ Intrinsic Stress Behavior in Cu Thin Films

기판 표면 조도에 따른 구리박막의 실시간 고유응력 거동

  • Cho, Moohyun (Department of Material Science & Engineering, Chonnam National University) ;
  • Hwang, Seulgi (Department of Material Science & Engineering, Chonnam National University) ;
  • Ryu, Sang (Department of Material Science & Engineering, Chonnam National University) ;
  • Kim, Youngman (Department of Material Science & Engineering, Chonnam National University)
  • 조무현 (전남대학교 신소재공학부) ;
  • 황슬기 (전남대학교 신소재공학부) ;
  • 류상 (전남대학교 신소재공학부) ;
  • 김영만 (전남대학교 신소재공학부)
  • Received : 2009.04.14
  • Published : 2009.08.25

Abstract

Our group previously observed the intrinsic stress evolution of Cu thin films during deposition by changing the deposition rate. Intrinsic stress of Cu thin films, which show Volmer-Weber growth, is reported to display three unique stress stages, initial compressive, broad tensile, and incremental compressive stress. The mechanisms of the initial compressive stress and incremental compressive stages remain subjects of debate, despite intensive research inquiries. The tensile stress stage may be related to volume contraction through grain growth and coalescence to reduce over-accumulate Cu adatoms on the film surface. The in-situ intrinsic stresses behavior in Cu thin films was investigated in the present study using a multi-beam curvature measurement system attached to a thermal evaporation device. The effect of substrate surface roughness was monitored by observed the in-situ intrinsic stress behavior in Cu thin films during deposition, using $100{\mu}m$ thick Si(111) wafer substrates with three different levels of surface roughness.

Keywords

Acknowledgement

Supported by : 전남대학교

References

  1. R. Abermann, R. Kramer, and J. Mser, Thin Solid Films 52,215 (1978) https://doi.org/10.1016/0040-6090(78)90140-2
  2. A. L. Shull and F. Spaepen, J. Appl. Phys. 80, 6243 (1996) https://doi.org/10.1063/1.363701
  3. M. Laugier, Vacuum 31, 155 (1981) https://doi.org/10.1016/0042-207X(81)90007-5
  4. R. C. Cammarata, T. M. Trimble, and D. J. Srolovitz, J.Mater. Res. 15, 246 (2000)
  5. F. Spaepen, Acta Mater. 48, 31 (2000) https://doi.org/10.1016/S1359-6454(99)00286-4
  6. E. Chason, B. W. Sheldon, L. B. Freund, J. A. Floro, and S.J. Hearne, Phys. Rev. Lett. 88, 156103 (2003) https://doi.org/10.1103/PhysRevLett.88.156103
  7. K. Kinosita, K. Maki, K. Nakamizo, and K. Takeuchi, Jpn. J. Appl. Phys. 6, 42 (1967) https://doi.org/10.1143/JJAP.6.42
  8. R. Abermann, Vacuum 41, 1279 (1990) https://doi.org/10.1016/0042-207X(90)93933-A
  9. R. Abermann, R. Koch, and R. Kramer, Thin Solid Films 58, 365 (1979) https://doi.org/10.1016/0040-6090(79)90272-4
  10. R. W. Hoffman, Thin Solid Films 34, 185 (1976) https://doi.org/10.1016/0040-6090(76)90453-3
  11. W. D. Nix and B. M. Clemens, J. Mater. Res. 14, 8 (1999) https://doi.org/10.1557/JMR.1999.0003
  12. S. C. Seel, C. V. Thompson, S. J. Hearne, and J. A. Floro, J. Appl. Phys. 88, 7079 (2000) https://doi.org/10.1063/1.1325379
  13. C.-W. Pao and D. J. Srolovitz, J. Mech. Phys. Solids 54, 2527 (2006) https://doi.org/10.1016/j.jmps.2006.07.008
  14. T. S. Tello and A. F. Bower, J. Mech. Phys. Solids 56, 2727(2008) https://doi.org/10.1016/j.jmps.2008.02.008
  15. R. Abermann and H. P. Martinz, Thin Solid Films 115, 185(1984) https://doi.org/10.1016/0040-6090(84)90179-2
  16. R. Koch, H. Leonhard, and R. Abermann, Thin Solid Films 89, 117 (1982) https://doi.org/10.1016/0040-6090(82)90436-9
  17. H. P. Martinz and R. Abermann, Thin Solid Films 89, 133(1982) https://doi.org/10.1016/0040-6090(82)90440-0
  18. R. Abermann and R. Koch, Thin Solid Flms 142, 65 (1986) https://doi.org/10.1016/0040-6090(86)90303-2
  19. R. Abermann, Thin Solid Films 186, 233 (1990) https://doi.org/10.1016/0040-6090(90)90145-4
  20. G. Thurner and R. Avermann, Thin Solid Films 192, 277(1990) https://doi.org/10.1016/0040-6090(90)90072-L
  21. D. Winau, R. Koch, and K. H. Rieder, Appl. Phys. Lett. 59,1072 (1991) https://doi.org/10.1063/1.106348
  22. S. Ryu, K. Lee, S. Ma, and Y. Kim, J. Nanosci. and Nanotech. 7, 4081 (2007) https://doi.org/10.1166/jnn.2007.089
  23. C. Friesen, S. C. Seel, and C. V. Thompson, J. Appl. Phys. 95, 1011 (2004) https://doi.org/10.1063/1.1637728
  24. C. Friesen and C. V. Thompson, Phys. Rev. Lett. 89, 126103(2002) https://doi.org/10.1103/PhysRevLett.89.126103
  25. H. Windischmann, CRC Crit. Rev. Solid State Mater. Sci. 17, 547 (1992) https://doi.org/10.1080/10408439208244586
  26. M. F. Doerner and W. D. Nix, CRC Crit. Rev. Solid State Mater. Sci. 14, 225 (1988) https://doi.org/10.1080/10408438808243734
  27. A. L. Vecchio and F. Spaepen, J. Appl. Phys. 101, 063518(2007) https://doi.org/10.1063/1.2712150
  28. S. Ryu, K. Lee, S. Ma, and Y. Kim, J. Nanosci. and Nanotech. 7, 4081 (2007) https://doi.org/10.1166/jnn.2007.089
  29. S. Ryu, K. Lee, Y. Kim, J. Kor. Inst. Met. & Mater. 46, 283(2008)
  30. G. G. Stoney, Proc. R. Soc. A 82, 172 (1909) https://doi.org/10.1098/rspa.1909.0021
  31. D. W. Pashley, M. J. Stowell, and M. H. Jacobs, Phill. Mag. 10, 127 (1964) https://doi.org/10.1080/14786436408224212