Al-Si-Cu계 AC2B 합금의 최적 용체화 처리 조건

The Optimal Solution Treatment Condition in a Al-Si-Cu AC2B Alloy

  • 정재길 (연세대학교 공과대학 신소재공학과) ;
  • 박준수 (연세대학교 공과대학 신소재공학과) ;
  • 하양수 (연세대학교 공과대학 신소재공학과) ;
  • 이영국 (연세대학교 공과대학 신소재공학과) ;
  • 전중환 (한국생산기술연구원 생산기반기술연구본부) ;
  • 강희삼 (현대기아자동차 연구개발총괄본부) ;
  • 임종대 (현대기아자동차 연구개발총괄본부)
  • Jung, Jae-Gil (Department of Materials Science and Engineering, Yonsei University) ;
  • Park, June-Soo (Department of Materials Science and Engineering, Yonsei University) ;
  • Ha, Yang-Soo (Department of Materials Science and Engineering, Yonsei University) ;
  • Lee, Young-Kook (Department of Materials Science and Engineering, Yonsei University) ;
  • Jun, Joong-Hwan (Production Technology R&D Division, Korea Institute of Industrial Technology) ;
  • Kang, Hee-Sam (Research & Development Division, Hyundai-Kia Motors) ;
  • Lim, Jong-Dae (Research & Development Division, Hyundai-Kia Motors)
  • 투고 : 2009.03.06
  • 발행 : 2009.04.25

초록

The precipitates, hardness, and tensile properties of Al-6.2Si-2.9Cu AC2B alloy were investigated with respect to solution treatment time at $500^{\circ}C$. $Al(Cu)-Al_2Cu$ eutectic, Si, ${\theta}-(Al_2Cu)$, and $Q-(Al_5Cu_2Mg_8Si_6)$ phases were observed in the as-cast specimen. With increasing the solution treatment time at $500^{\circ}C$, the $Al(Cu)-Al_2Cu$ eutectic and ${\theta}-(Al_2Cu)$ phases were gradually reduced and finally almost disappeared in 5 h. The mechanical properties, such as hardness, tensile strength, and elongation, were improved with solution treatment time until about 5 h due to the dissolution of the $Al_2Cu$ particles. With further holding time, the mechanical properties did not change much. The solution treated specimens for over 5 h at $500^{\circ}C$ exhibit almost the same tensile properties even after aging at $250^{\circ}C$ for 3.5 h. Accordingly, the optimal solution treatment condition of the Al-Si-Cu AC2B alloy is considered to be 5 h at $500^{\circ}C$.

키워드

과제정보

연구 과제번호 : 가솔린 헤드의 열처리 최적화

연구 과제 주관 기관 : NGV

참고문헌

  1. J. M. Boileau and J. E. Allison, Metall. Mater. Trans. A 34A, 1807 (2003) https://doi.org/10.1007/s11661-003-0147-4
  2. K. Sasaki and T. Takahashi, Int. J. Fatigue 28, 203 (2006) https://doi.org/10.1016/j.ijfatigue.2005.06.025
  3. N. Roy, A. M. Samuel, and F. H. Samuel, Metall. Mater. Trans. A 27A, 415 (1996) https://doi.org/10.1007/BF02648419
  4. D. Kent, G. B. Schaffer, and J. Drennan, Mater. Sci. Eng. A 405, 65 (2005) https://doi.org/10.1016/j.msea.2005.05.104
  5. K. D. Woo, J. S. Lee, and S. W. Kim, Metals and Materials Int. 5, 363 (1999)
  6. H. R. Ammar, C. Moreau, A. M. Samuel, F. H. Samuel, and H. W. Doty, Mater. Sci. Eng. A 489, 426 (2008) https://doi.org/10.1016/j.msea.2007.12.032
  7. N. Crowell and S. Shivkumar, AFS Trans. 103, 721 (1995)
  8. C. H. Lee, J. J. Lee, B. I. Kim, and C. H. Bae, Non-Ferrous Metallic Materials, 1st ed., p.99, WonChang, Incheon (1993)
  9. ASTM Designation, ASTM, E8M-04 (2003)
  10. C. S. Kang, S. H. Hwang, and S. H. Kim, J. Kor. Inst. Met. & Mater. 22, 1215 (1984)
  11. N. Saunders and A. P. Miodownik, Calphad, Elsevier, Oxford (1998)
  12. L. Lasa and J. M. Rodriguez-Ibabe, Mater. Charac. 48, 371 (2002) https://doi.org/10.1016/S1044-5803(02)00283-8