Rooting and Budbreak of Single-Stemmed Roses (Rosa hybrida L.) as Affected by Axillary Bud Position and Leaf Area of Cuttings

장미 식물공장 생산에서 삽수의 채취 절위와 엽면적에 따른 단경삽목묘의 발근과 신초발아 특성

  • Kim, Wan Soon (Department of Environmental Horticulture, The University of Seoul)
  • 김완순 (서울시립대학교 환경원예학과)
  • Received : 2009.11.13
  • Accepted : 2009.12.23
  • Published : 2009.12.31

Abstract

This study was carried out to investigate the characteristics of rooting and bud break of single-stemmed roses (Rosa hybrida L. 'Rate Rose' and 'Teresa') as affected by axillary bud position and leaf area of cuttings derived from different growth stage of the mother shoots. In fact, both rooting and budbreak of single-stemmed roses were not influenced by growth stage of mother shoots, with showing more than 95% in all treatment related to mother shoot maturity. 'Rote Rose' required 34 days to average rooting and budbreak after cutting, whereas 'Teresa' did only 18 days to budbreak which was 9 days faster than rooting. Rooting and bud break needed more time and showed lower percent as the axillaty bud position for cuttings went down to the base of mother shoots. Especially 'Teresa' showed 12 days of delay to budbreak and 14.4% decrease in budbreak. Also, the increase in leaf area of cuttings accelerated rooting and budbreak, of which the time was shorter and the percent was higher.

절화 장미의 식물공장적 생산을 위해 삽수용 모주의 성숙정도, 삽수의 채취 절위와 엽면적이 단경삽목묘(single-node cuttings)의 발근과 신초발아에 미치는 영향을 조사하였다. 모주의 성숙정도는 SNC의 발근 및 신초 발아 활성에 큰 영향을 주지는 않았다. 전체적으로 95% 이상의 발근 및 신초발아율을 나타났으며, 'Rote Rose'는 발근과 신초발아가 삽목 후 34일 경에 동시에 일어난 반면, 'Teresa'의 신초발아 소요기간은 18일로 발근보다 9일 먼저 시작되었으며 'Rote Rose'보다는 16일이나 짧았다. 삽수 채취 절위가 줄기 기부방향으로 내려갈수록 발근 및 신초발아의 소요일수는 늘어나고 발근율과 신초발아율은 감소하였다. 특히 'Teresa' 품종에서 더욱 뚜렷하였는데 신초발아의 소요일수는 최대 12일 지연되었고 신초발아율은 14.4%나 감소하였다. 또한 삽수의 엽면적이 클수록 발근 및 신초 발아율이 증가하고 소요일수도 단축되었다.

Keywords

Acknowledgement

Supported by : 서울시립대학교

References

  1. Anderson, R.G. 1990. Use of pot plant mechanization techniques to produce short stemmed cut flower for supermarket bouquets. Acta Hort. 272:319-326.
  2. Bredmose, N.B. 1997. Chronology of three physiological development phases of single-stemmed roses (Rosa hybrida L.) plants in response to light quantum integral. Sci. Hort. 58:235-251.
  3. Bredmose, N.B. 1998. Growth, flowering, and postharvest performance of single-stemmed rose (Rosa hybrida L.) plants in response to light quantum integral and plant population density. J. Amer. Soc. Hort. Sci. 123(4):569-576.
  4. Bredmose, N.B. and J. Hansen. 1996a. Topophysis affects the potential of axillary bud growth, fresh biomass accumulation and specific fresh weight in single-stem roses (Rosa hybrida L.). Ann. Bot. 78:215-222. https://doi.org/10.1006/anbo.1996.0115
  5. Bredmose, N.B. and J. Hansen. 1996b. Potential of growth and flowering in single-stem rose (Rosa hybrida L.) plants as affected by topophysis. Acta Hort. 440:99-104.
  6. Carpenter, W.J. and R.C. Rodriguez. 1971. The effect of plant growth regulating chemicals on rose shoot development from basal and axillary buds. J. Amer. Soc. Hort. Sci. 96(3):389-391.
  7. Cockshull K.E. and J.S. Horridge, 1977. Apical dominance and flower initiation the rose. J. Hort. Sci. 52:421-427.
  8. Kim, S.T., W.H. Kim, Y.J. Kim, K.Y. Huh, E.K. Lee, and P.M. Park. 2009. Breeding of pink rose 'Happy Day' with powdery mildew (Sphaerotheca pannosa var. rosae) resistance. Flower Res. J. 17(3): 190-193.
  9. Kim, W.S. and J.S. Lee. 2008. Growth and Light use efficiency under different light intensities of cut rose 'Rote Rose' as affected by night temperature. Hort. Environ. Biotechnol. 49(4):226-231.
  10. Marcelis-van Acker, C.A.M. 1993. Morphological study of the formation and development of basal shoots in roses. Sci. Hort. 54:143-152. https://doi.org/10.1016/0304-4238(93)90062-U
  11. Marcelis-van Acker, C.A.M. 1994. Development and growth potential of axillary buds in roses as affected by bud age. Ann. Bot. 74:437-443. https://doi.org/10.1006/anbo.1994.1139
  12. Prince, T.L., J.L. Robertson and L.H. Chatfield. 1980. Factors affecting the marketability of roses. J. Amer. Soc. Hort. Sci. 105(3):388-393.
  13. Van den Berg, G.A. 1984. Lowering heating costs per rose through increased production by use of movable benches. Acta Hort. 148:97-104.
  14. van Weel, P.A. 1996. Rose factory design. Acta Hort. 440:298-303.
  15. Yeo, K.H. and Y.B. Lee, 2009. Growth and photosynthesis of single-stemmed roses as affected by macro- and micro-element amendment in a closed aeroponic system. Kor. J. Hort. Sci. Technol. 27(3):404-413.