DOI QR코드

DOI QR Code

Prediction on Maximum Performance of Cascade Refrigeration System Using R717 and R744

R718-R744용 캐스케이드 냉동시스템의 최대 성능 예측

  • Roh, Geun-Sang (Division of Refrigeration and Air-Conditioning, TongMyong University) ;
  • Son, Chang-Hyo (Division of Mechanical Engineering, PuKyoung National University)
  • 노건상 (동명대학교 냉동공조공학과) ;
  • 손창효 (부경대학교 기계공학부)
  • Published : 2009.10.31

Abstract

In this paper, cycle performance analysis of cascade refrigeration system using $NH_3-CO_2$(R717-R744) is presented to offer the basic design data for the operating parameters of the system. The operating parameters considered in this study include subcooling and superheating degree and condensing and evaporating temperature in the ammonia(R717) high temperature cycle and the carbon dioxide low temperature cycle. The COP of cascade refrigeration system increases with the increasing superheating degree, but decreases with the increasing subcooling degree. The COP of cascade refrigeration system increases with the increasing condensing temperature, but decreases with the increasing evaporating temperature. Therefore, superheating and subcoolng degree, evaporating and condensing temperature of cascade refrigeration system using $NH_3-CO_2$ have an effect on the COP of this system. A multilinear regression analysis was employed in terms of subcooling, superheating, evaporating, condensing, and cascade heat exchanger temperature difference in order to develop mathematical expressions for maximum COP and an optimum evaporating temperature.

본 논문은 시스템의 운전조건하에서 R717-R747용 이원냉동 사이클의 성능 분석에 대한 기초 설계자료를 제공하는 것이다. 본 논문에서 고려한 운전변수는 암모니아 고온사이클과 이산화탄소 저온사이클의 과냉각도, 과열도, 응축과 증발온도이다. 이원 냉동사이클의 성적계수는 과열도가 증가할수록 증가하는 반면, 과냉각도가 증가할수록 감소한다. 그리고, 이원 냉동사이클의 성적계수는 응축온도와 함께 증가하지만, 증발온도와는 반대로 감소한다. 따라서, 과열도, 과냉도, 응축과 증발온도는 본 시스템의 성적계수에 영향을 미치는 것을 알 수 있었고, 최대 성능계수와 최적의 증발온도에 대한 수학 방정식을 개발하기 위해 이러한 변수들을 포함시켜 다중 회귀분석을 통해 제안하였다.

Keywords

References

  1. S. Sawalha, Using CO2 in supermarket refrigeration. ASHRAE J. Vol. 47, No. 8, 26-30, 2005.
  2. I. Wilson and D. Maier, Carbon dioxide for use as a refrigerant. In: Refrigeration Science and Technology, Proceedings, IIR-IRHACE Conference, Innovative Equipment and Systems for Comfort and Food Preservation. The University of Auckland, pp. 305-311, 2006.
  3. S. N. Park and M. S. Kim, Performance of autocascade refrigeration system using carbon dioxide and R134a, Korea J. of Air-Conditioning and Refrigeration Eng., Vol. 11, No. 6, pp. 880-890, 1999.
  4. C. Chaichana, L. Aye and W.W.S. Charters, 2003. Natural working fluids for solar-boosted heat pumps. Int. J. Refrigeration 26, 637-643, 2003. https://doi.org/10.1016/S0140-7007(03)00046-X
  5. T. S. Lee, C. H. Liu and T. W. Chen, Thermodynamic analysis of optimal condensing temperature of cascade condenser in CO2/NH3 cascade refrigeration systems. Int. J. Refrigeration 29, 1100-1108, 2006. https://doi.org/10.1016/j.ijrefrig.2006.03.003
  6. S. Bhattacharyya, S. Mukhopadhyay, A. Kumar, R. K. Khurana and J. Sarkar, Optimization of a CO2-C3H8 cascade system for refrigeration and heating. Int. J. Refrigeration 28, 1284-1292, 2005. https://doi.org/10.1016/j.ijrefrig.2005.08.010
  7. P. K. Bansal and S. Jain, Cascade systems: past, present, and future. ASHRAE Trans. 113 (1), 245-252 (DA-07-027), 2007.
  8. EES: Engineering Equation Solver, 2006. fChart Software Inc.