Abstract
The performance of spatio-temporal moving pattern mining depends on how to analyze and process the huge set of spatio-temporal data due to the nature of it. The several method was presented in order to solve the problems in which existing spatio-temporal moving pattern mining methods[1-10] have, such as increasing execution time and required memory size during the pattern mining, but they did not solve properly yet. Thus, we proposed the STMP/MST method[11] as a preceding research in order to extract effectively sequential and/or periodical frequent occurrence moving patterns from the huge set of spatio-temporal moving data. The proposed method reduces patterns mining execution time, using the moving sequence tree based on hash tree. And also, to minimize the required memory space, it generalizes detailed historical data including spatio-temporal attributes into the real world scopes of space and time by using spatio-temporal concept hierarchy. In this paper, in order to verify the effectiveness of the STMP/MST method, we compared and analyzed performance with existing spatio-temporal moving pattern mining methods based on the quantity of mining data and minimum support factor.
시공간 이동 패턴 탐사는 특성상 방대한 시공간 데이터의 분석 및 처리 방법에 따라 패턴 탐사의 성능이 좌우된다. 기존의 시공간 패턴 탐사 기법들[1-10]이 가진 패턴 탐사 수행 시간이나 패턴 탐사 시 사용되는 메모리양이 증가하는 문제를 해결하기 위해 일부 기법에서 몇 가지 방법을 제시하였으나 아직 미비한 실정하다. 이에 선행 연구로 방대한 시공간 이동 데이터 집합으로부터 순차적이고 주기적인 빈발 이동 패턴을 효과적으로 추출하기 위한 STMP/MST 탐사 기법[11]을 제안하였다. 제안된 기법은 해시 트리 기반의 이동 시퀀스 트리를 생성하여 빈발 이동 패턴을 탐사함으로써 탐사 수행 시간을 최소화하고, 상세 수준의 이력 데이터들을 실세계의 의미있는 시간 및 공간영역으로 일반화하여 탐사 시 소요되는 메모리양을 감소시킬 수 있다. 본 논문에서는 이러한 STMP/MST 탐사 기법의 효율성을 검증하기 위해서 탐사 대상 데이터양과 최소지지도를 기준으로 기존의 시공간 패턴 탐사 기법들과 탐사 수행 성능을 비교하고 분석한다.