가상의 목표점을 이용한 무인 잠수정의 충돌회피 귀환 경로계획

Virtual Goal Method for Homing Trajectory Planning of an Autonomous Underwater Vehicle

  • 박성국 (충남대학교 BK21 메카트로닉스사업단) ;
  • 이지홍 (충남대학교 BK21 메카트로닉스사업단) ;
  • 전봉환 (한국해양연구원 해양시스템안전연구소) ;
  • 이판묵 (한국해양연구원 해양시스템안전연구소)
  • 발행 : 2009.10.31

초록

An AUV (Autonomous Underwater Vehicle) is an unmanned underwater vessel to investigate sea environments and deep sea resource. To be completely autonomous, AUV must have the ability to home and dock to the launcher. In this paper, we consider a class of homing trajectory planning problem for an AUV with kinematic and tactical constraints in horizontal plane. Since the AUV under consideration has underactuated characteristics, trajectory for this kind of AUV must be designed considering the underactuated characteristics. Otherwise, the AUV cannot follow the trajectory. Proposed homing trajectory panning method that called VGM (Virtual Goal Method) based on visibility graph takes the underactated characteristics into consideration. And it guarantees shortest collision free trajectory. For tracking control, we propose a PD controller by simple guidance law. Finally, we validate the trajectory planning algorithm and tracking controller by numerical simulation and ocean engineering basin experiment in KORDI.

키워드

참고문헌

  1. 마성진 (2007). 자율무인잠수정의 선수각 및 심도 제어기 설계와 외란응답 특성분석, 부경대학교 석사학위 논문
  2. 이판묵 (2007), 차세대 심해용 무인잠수정 개발(1단계), 한국해양연구원 연구보고서, PM0124A
  3. 이판묵, 전봉환, 이종무 (2002), "비쥬얼 서보 제어기를 이용한 자율무인잠수정의 도킹", 한국해양공학회 2002년 추계학술대회논문집, pp 142-148
  4. 이판묵, 전봉환, 이종무 (2003), "자율무인잠수정의 수중 도킹을 위한 비쥬얼 서보 제어 알고리즘", 한국해양공학회지, 제17권, 제1호, pp 1-7
  5. 이필엽, 전봉환, 심형원, 이판묵 (2008). "실해역 임무를 위한 자율 무인잠수정 ISiMI100의 설계와 구현", 한국해양환경공학회 2008년도 한국해양과학기술협의회 공동학술대회 초록집, pp 2295-2299
  6. 전봉환, 박진영, 이판묵, 이필엽 (2007). "자율무인잠수정 테스트베드 이심이의 개발과 수조시험", 한국해양공학회지, 제21권, 제2호, pp 67-74
  7. Amato, N.M. and Wu, Y. (1996). "A Randomized Roadmap Method for Path and Manipulation Planning", Proc. of IEEE International Conference on Robotics and Automation, pp 113-120
  8. Elfes, A. (1989). "Using Occupancy Grids for Mobile Robot Perception and Navigation", IEEE Trans. on Computer. Vol 22, No 6, pp 46-57
  9. Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L.E. and Thrun, S. (2005). Principles of Robot Motion, MIT Press
  10. Herr, W.T. (1988). "AUV Technology Development and Demonstration Program", Proc. of A Partnership of Marine Interests. pp 1290-1299
  11. Khatib, O. (1986). "Real-Time Obstacle Avoidance for Manipulators and Mobile Robots", International Journal of Robotics Research, Vol 5, No 1, pp 90-98 https://doi.org/10.1177/027836498600500106
  12. Latombe, J.C. (1991). Robot Motion Planning, Boston, MA:Kluwer Academic Publishers, pp 153-199
  13. Lozano-Perez, T. (1983). "Spatial Planning: A Configuration Space Approach", IEEE Trans. on Computers, Vol C-32, No 2, pp 108-120 https://doi.org/10.1109/TC.1983.1676196
  14. Valavanis, K.P., Hebert, T., Kolluru, R. and Tsourveloudis, N.C. (2000). "Mbile Robot Navigation in 2-D Dynamic Environments using Electrostatic Potential Fields", IEEE Trans. Systems, Man and Cybernetics, part A, Vol 30, No 2, pp 187-197 https://doi.org/10.1109/3468.833100
  15. Yongkuan, L. (1992). "AUV's Trends over the World in the Future Decade", IEEE Symp. Autonomous Underwater Vehicle Technology, pp 116-130