참고문헌
- Cao, H., J. Glazebrook, J. D. Clarke, S. Volko, and X. Dong. 1997. The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88: 57-63 https://doi.org/10.1016/S0092-8674(00)81858-9
- Choi, D., Y. Lee, H. T. Cho, and H. Kende. 2003. Regulation of expansin gene expression affects growth and development in transgenic rice plants. Plant Cell 15: 1386-1398 https://doi.org/10.1105/tpc.011965
- Clarke, J. D., N. Aarts, B. J. Feys, X. Dong, and J. E. Parker. 2000. Roles of salicylic acid, jasmonic acid, and ethylene in cpr-induced resistance in Arabidopsis. Plant Cell 12: 2175-2190 https://doi.org/10.1105/tpc.12.11.2175
- Dangl, J. L. and J. D. Jones. 2001. Plant pathogens and integrated defense responses to infection. Nature 411: 826-833 https://doi.org/10.1038/35081161
- Dobbelaere, S., J. Vanderleyden, and Y. Okon. 2003. Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit. Rev. Plant Sci. 22: 107-149 https://doi.org/10.1080/713610853
- Dong, X. 1998. SA, JA, ethylene, and disease resistance in plants. Curr. Opin. Plant Biol. 1: 316-323 https://doi.org/10.1016/1369-5266(88)80053-0
- Emmert, E. A. B. and J. Handelsman. 1999. Biocontrol of plant disease: A Gram-positive perspective. FEMS Microbiol. Lett. 171: 1-9 https://doi.org/10.1111/j.1574-6968.1999.tb13405.x
- Idris, E. E. S., H. Bochow, H. Ross, and R. Borriss. 2004. Use of Bacillus subtilis as biocontrol agent. Phytohormone-like action of culture filtrates prepared from plant growth-promoting Bacillus amyloliquefaciens FZB24, FZB42, FZB45 and Bacillus subtilis FZB37. J. Plant Dis. Prot. 111: 583-597
- Idris, E. E. S., O. Makarewicz, A. Farouk, K. Rosner, R. Greiner, H. Bochow, T. Richter, and R. Borriss. 2002. Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growth-promoting effect. Microbiology 148: 2097-2109
- Kessmann, H., T. Staub, J. Ligon, M. Oostendorp, and J. Ryals. 1994. Activation of systemic acquired disease resistance in plants. Eur. J. Plant Pathol. 100: 359-369 https://doi.org/10.1007/BF01874804
- Kim, S. T., S. G. Kim, D. H. Hwang, S. Y. Kang, H. J. Kim, B. H. Lee, J. J. Lee, and K. Y. Kang. 2004. Proteomic analysis of pathogen-responsive proteins from rice leaves induced by rice blast fungus, Magnaporthe grisea. Proteomics 4: 3569-3578 https://doi.org/10.1002/pmic.200400999
- Kloepper, J. W., C. M. Ryu, and S. Zhang. 2004. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94: 1259-1266 https://doi.org/10.1094/PHYTO.2004.94.11.1259
- Kloepper, J. W., F. M. Scher, M. Laliberte, and B. Tipping. 1986. Emergence-promoting bacteria: Description and implications for agriculture, pp. 155-164. In T. R. Swinburne (ed.). Iron, Siderphores and Plant Diseases. Plenum, New York
- Kloepper, J. W., M. S. Reddy, D. S. Kenney, C. Vavrina, N. Kokalis-Burelle, and N. Martinez-Ochoa. 2004. Theory and applications of rhizobacteria for transplant production and yield enhancement. Proc. XXVI IHC-Transplant Production and Stand Establishment. S. Nicola, J. Nowak, and C. S. Vavrina (eds.). Acta Hortic. 631: 219-229
- Krause, M. S., T. J. J. De Ceuster, S. M. Tiquia, F. C. Michel, Jr. L. V. Madden, and H. A. J. Hoitink. 2003. Isolation and characterization of rhizobacteria from composts that suppress the severity of bacterial leaf spot of radish. Phytopathology 93:1292-1300 https://doi.org/10.1094/PHYTO.2003.93.10.1292
- Krebs, B., B. Hoding, S. M. Kubart, A. Workie, H. Junge, G. Schmiedeknecht, R. Grosch, H. Bochow, and M. Hevesi. 1998. Use of Bacillus subtilis as biocontrol agent. 1. Activities and characterization of Bacillus subtilis strains. J. Plant Dis. Prot. 105: 181-197
- Landy, M., G. H. Warren, S. B. Roseman, and L. G. Colio. 1948. Bacillomycin, an antibiotic from Bacillus subtilis active against pathogenic fungi. Proc. Soc. Exp. Biol. Med. 67: 539-541
- Maurhofer, M., C. Hase, P. Meuwly, J. P. Metraux, and G. Defago. 1994. Induction of systemic resistance of tobacco to tobacco necrosis virus by the root-colonizing Pseudomonas fluorescens strain CHA0: Influence of the gacA gene and of pyoverdine production. Phytopathology 84: 139-146 https://doi.org/10.1094/Phyto-84-139
- Mou, Z., W. Fan, and X. Dong. 2003. Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113: 815-826 https://doi.org/10.1016/S0092-8674(03)00473-2
- Murphy, J. F., M. S. Reddy, C. M. Ryu, J. W. Kloepper, and R. Li. 2003. Rhizobacteria-mediated growth promotion of tomato leads to protection against cucumber mosaic virus. Phytopathology 93: 1301-1307 https://doi.org/10.1094/PHYTO.2003.93.10.1301
- Murphy, J. F., G. W. Zehnder, D. J. Schuster, E. J. Sikora, J. E. Polston, and J. W. Kloepper. 2000. Plant growth-promoting rhizobacterial mediated protection in tomato against tomato mottle virus. Plant Dis. 84: 779-784 https://doi.org/10.1094/PDIS.2000.84.7.779
- Park, K. S. and J. W. Kloepper. 2000. Activation of PR-1a promoter by rhizobacteria that induce systemic resistance in tobacco against Pseudomonas syringae pv. tabaci. Biol. Control 18: 2-9 https://doi.org/10.1006/bcon.2000.0815
- Peng, J. L., H. S. Dong, H. P. Dong, T. P. Delaney, B. M. Bonasera, and S. V. Beer. 2003. Harpin-elicited hypersensitive cell death and pathogen resistance requires the NDR1 and EDS1 genes. Physiol. Mol. Plant Pathol. 62: 317-326 https://doi.org/10.1016/S0885-5765(03)00078-X
- Pieterse, C. M. J., S. C. M. van Wees, E. Hoffland, J. A. van Pelt, and L. C. van Loon. 1996. Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell 8: 1225-1237 https://doi.org/10.1105/tpc.8.8.1225
- Pieterse, C. M. J., S. C. M. van Wees, J. A. van Pelt, M. L. R. Knoester, H. Gerrits, P. J. Weisbeek, and L. C. van Loon. 1998. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10: 1571–1580 https://doi.org/10.1105/tpc.10.9.1571
-
Ryu, C. M., M. A. Farag, C. H. Hu, M. S. Reddy, H. X. Wei, P. W. Par
$\acute{e}$ , and J. W. Kloepper. 2003. Bacterial volatiles promote growth in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 100:4927-4932 https://doi.org/10.1073/pnas.0730845100 - Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, U.S.A
- Saravanakumara, D., V. Charles, N. Kumarb, and R. Samiyappan. 2007. PGPR-induced defense responses in the tea plant against blister blight disease. Crop Prot. 26: 556-565 https://doi.org/10.1016/j.cropro.2006.05.007
- Schmiedeknecht, G., H. Bochow, and H. Junge. 1998. Use of Bacillus subtilis as biocontrol agent. II. Biological control of potato disease. J. Plant Dis. Prot. 105: 376-386
- Schneider, S. and W. R. Ullrich. 1991. Differential induction of resistance and enhanced enzyme activities in cucumber and tobacco caused by treatment with various abiotic and biotic inducers. Physiol. Mol. Plant Pathol. 45: 291-301 https://doi.org/10.1016/S0885-5765(05)80060-8
-
Sticher, L., B. Mauch-Mani, and J. P. M
$\acute{e}$ traux. 1997. Systemic acquired resistance. Annu. Rev. Phytopathol. 35: 235-270 https://doi.org/10.1146/annurev.phyto.35.1.235 - Van Loon, L. C., P. A. H. M. Bakker, and M. J. Pieterse. 1998. Systemic induced resistance by rhizosphere bacteria. Annu. Rev. Phytopathol. 36: 453-483 https://doi.org/10.1146/annurev.phyto.36.1.453
- Wang, Y., Y. Ohara, H. Nakayashiki, Y. Tosa, and S. Mayama. 2005. Microarray analysis of the gene expression profile induced by the endophytic plant growth-promoting rhizobacteria, Pseudomonas fluorescens FPT9601-T5 in Arabidopsis. Mol. Plant Microbe Interact. 18: 385-396 https://doi.org/10.1094/MPMI-18-0385
- Xie, D. X., B. F. Feys, S. James, M. Nieto-Rostro, and J. G. Turner. 1998. Coi1: An Arabidopsis gene required for jasmonateregulated defense and fertility. Science 280: 1091-1094 https://doi.org/10.1126/science.280.5366.1091
- Zehnder, G. W., C. Yao, J. F. Murphy, E. R. Sikora, and J. W. Kloepper. 2000. Induction of resistance in tomato against cucumber mosaic cucumovirus by plant growth-promoting rhizobacteria. Biocontrol 45: 127-137 https://doi.org/10.1023/A:1009923702103
- Zhang, S., M. S. Reddy, and J. W. Kloepper. 2004. Tobacco growth enhancement and blue mold disease protection by rhizobacteria: Relationship between plant growth promotion and systemic disease protection by PGPR strain 90-166. Plant Soil 262: 277-288 https://doi.org/10.1023/B:PLSO.0000037048.26437.fa
피인용 문헌
- Induction of systemic resistance in tobacco againstTobacco mosaic virusbyBacillusspp. vol.21, pp.3, 2009, https://doi.org/10.1080/09583157.2010.543667
- Biological control of anthracnose (Colletotrichum gloeosporioides) in yam by Streptomyces sp.MJM5763 vol.111, pp.2, 2009, https://doi.org/10.1111/j.1365-2672.2011.05048.x
- The role of synergistic action and molecular mechanism in the effect of genetically engineered strain Bacillus subtilis OKBHF in enhancing tomato growth and Cucumber mosaic virus resistance vol.56, pp.1, 2009, https://doi.org/10.1007/s10526-010-9306-x
- Response of barley to root colonization byPseudomonassp. DSMZ 13134 under laboratory, greenhouse, and field conditions vol.7, pp.1, 2012, https://doi.org/10.1080/17429145.2011.597002
- Induction of systemic resistance against Cucumber mosaic virus by Penicillium simplicissimum GP17‐2 in Arabidopsis and tobacco vol.61, pp.5, 2009, https://doi.org/10.1111/j.1365-3059.2011.02573.x
- The modulating effect of bacterial volatiles on plant growth : Current knowledge and future challenges vol.7, pp.1, 2012, https://doi.org/10.4161/psb.7.1.18418
- Isolation and characterisation of aerobic endospore forming Bacilli from sugarcane rhizosphere for the selection of strains with agriculture potentialities vol.28, pp.4, 2009, https://doi.org/10.1007/s11274-011-0965-2
- The plant growth-promoting fungus Fusarium equiseti and the arbuscular mycorrhizal fungus Glomus mosseae induce systemic resistance against Cucumber mosaic virus in cucumber plants vol.361, pp.1, 2012, https://doi.org/10.1007/s11104-012-1255-y
- Assessment of the relevance of the antibiotic 2-amino-3-(oxirane-2,3-dicarboxamido)-propanoyl-valine from Pantoea agglomerans biological control strains against bacterial plant pathogens vol.1, pp.4, 2012, https://doi.org/10.1002/mbo3.43
- Biotechnological potential of rhizobial metabolites to enhance the performance of Bradyrhizobium spp. and Azospirillum brasilense inoculants with soybean and maize vol.3, pp.1, 2009, https://doi.org/10.1186/2191-0855-3-21
- Plant growth in Arabidopsis is assisted by compost soil-derived microbial communities vol.4, pp.None, 2009, https://doi.org/10.3389/fpls.2013.00235
- Bacillus subtilis biofilm induction by plant polysaccharides vol.110, pp.17, 2009, https://doi.org/10.1073/pnas.1218984110
- Co-inoculation of soybeans and common beans with rhizobia and azospirilla: strategies to improve sustainability vol.49, pp.7, 2009, https://doi.org/10.1007/s00374-012-0771-5
- Plant Growth Promotion by Spermidine-Producing Bacillus subtilis OKB105 vol.27, pp.7, 2014, https://doi.org/10.1094/mpmi-01-14-0010-r
- Identification and characterization of endophytic bacteria from corn ( Zea mays L.) roots with biotechnological potential in agriculture vol.4, pp.1, 2009, https://doi.org/10.1186/s13568-014-0026-y
- Transcriptome profiling of Bacillus subtilis OKB105 in response to rice seedlings vol.15, pp.None, 2009, https://doi.org/10.1186/s12866-015-0353-4
- Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42 – a review vol.6, pp.None, 2009, https://doi.org/10.3389/fmicb.2015.00780
- Soybean Seed Co-Inoculation with <i>Bradyrhizobium</i> spp. and <i>Azospirillum brasilense</i>: A New Biotechnological Tool to Improve Yield and vol.6, pp.6, 2009, https://doi.org/10.4236/ajps.2015.66087
- Enhanced plant growth and/or nitrogen fixation by leguminous and non-leguminous crops after single or dual inoculation of Streptomyces griseoflavus P4 with Bradyhizobium strains vol.9, pp.49, 2009, https://doi.org/10.5897/ajmr2015.7796
- Maize growth promotion by inoculation with Azospirillum brasilense and metabolites of Rhizobium tropici enriched on lipo-chitooligosaccharides (LCOs) vol.5, pp.1, 2009, https://doi.org/10.1186/s13568-015-0154-z
- Spraying of Leaf-Colonizing Bacillus amyloliquefaciens Protects Pepper from Cucumber mosaic virus vol.100, pp.10, 2009, https://doi.org/10.1094/pdis-03-16-0314-re
- Biological Control Activities of Rice-Associated Bacillus sp. Strains against Sheath Blight and Bacterial Panicle Blight of Rice vol.11, pp.1, 2009, https://doi.org/10.1371/journal.pone.0146764
- Plant Growth Promotion by Volatile Organic Compounds Produced by Bacillus subtilis SYST2 vol.8, pp.None, 2009, https://doi.org/10.3389/fmicb.2017.00171
- Genome-Guided Insights into the Plant Growth Promotion Capabilities of the Physiologically Versatile Bacillus aryabhattai Strain AB211 vol.8, pp.None, 2009, https://doi.org/10.3389/fmicb.2017.00411
- Bacillus : A Biological Tool for Crop Improvement through Bio-Molecular Changes in Adverse Environments vol.8, pp.None, 2009, https://doi.org/10.3389/fphys.2017.00667
- <i>Bacillus subtilis Strains</i> with Antifungal Activity against the Phytopathogenic Fungi vol.8, pp.1, 2009, https://doi.org/10.4236/as.2017.81001
- Volatile organic compounds produced by a soil-isolate, Bacillus subtilis FA26 induce adverse ultra-structural changes to the cells of Clavibacter michiganensis ssp. sepedonicus, the causal agent of ba vol.163, pp.4, 2009, https://doi.org/10.1099/mic.0.000451
- Exogenous application of phenylacetic acid promotes root hair growth and induces the systemic resistance of tobacco against bacterial soft-rot pathogen Pectobacterium carotovorum subsp. carotovorum vol.45, pp.11, 2018, https://doi.org/10.1071/fp17332
- Functional regions of HpaXm as elicitors with specific heat tolerance induce the hypersensitive response or plant growth promotion in nonhost plants vol.13, pp.1, 2009, https://doi.org/10.1371/journal.pone.0188788
- High temperatures affect the hypersensitive reaction, disease resistance and gene expression induced by a novel harpin HpaG-Xcm vol.9, pp.None, 2009, https://doi.org/10.1038/s41598-018-37886-9
- Modulation of defence and iron homeostasis genes in rice roots by the diazotrophic endophyte Herbaspirillum seropedicae vol.9, pp.None, 2009, https://doi.org/10.1038/s41598-019-45866-w
- Halo-tolerant rhizospheric Arthrobacter woluwensis AK1 mitigates salt stress and induces physio-hormonal changes and expression of GmST1 and GmLAX3 in soybean vol.77, pp.1, 2009, https://doi.org/10.1007/s13199-018-0562-3
- Antagonistic potential of lipopeptide producing Bacillus amyloliquefaciens against major vegetable pathogens vol.154, pp.2, 2009, https://doi.org/10.1007/s10658-018-01658-y
- Control of Alternaria leaf spot of coriander in organic farming vol.154, pp.3, 2009, https://doi.org/10.1007/s10658-019-01682-6
- Mechanisms of Plant Tolerance to RNA Viruses Induced by Plant-Growth-Promoting Microorganisms vol.8, pp.12, 2009, https://doi.org/10.3390/plants8120575
- Multiple Effect of Different Plant Growth Promoting Microorganisms on Beans (Phaseolus vulgaris L.) Crop vol.63, pp.0, 2009, https://doi.org/10.1590/1678-4324-solo-2020190493
- Prospects and Applications of Lipopeptide-Producing Bacteria for Plant Protection (Review) vol.56, pp.1, 2009, https://doi.org/10.1134/s0003683820010135
- Prospects and Applications of Lipopeptide-Producing Bacteria for Plant Protection (Review) vol.56, pp.1, 2009, https://doi.org/10.1134/s0003683820010135
- Bacillus atrophaeus HAB-5 secretion metabolites preventing occurrence of systemic diseases in tobacco plant vol.156, pp.1, 2009, https://doi.org/10.1007/s10658-019-01873-1
- Bacillus velezensis PEA1 Inhibits Fusarium oxysporum Growth and Induces Systemic Resistance to Cucumber Mosaic Virus vol.10, pp.9, 2009, https://doi.org/10.3390/agronomy10091312
- Enhancing resistance of Sesamum indicum against Alternaria sesami through Bacillus velezensis AR1 vol.76, pp.11, 2020, https://doi.org/10.1002/ps.5890
- Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions: A methodical review vol.743, pp.None, 2009, https://doi.org/10.1016/j.scitotenv.2020.140682
- Comparative transcriptomic analysis reveals that multiple hormone signal transduction and carbohydrate metabolic pathways are affected by Bacillus cereus in Nicotiana tabacum vol.112, pp.6, 2009, https://doi.org/10.1016/j.ygeno.2020.07.022
- Biological Methods of Plant Protection against Viruses: Problems and Prospects vol.56, pp.6, 2020, https://doi.org/10.1134/s0003683820060101
- Endospore-Forming Bacteria Present in a Commercial Stabilized Poultry Manure Determines the Fusarium Biocontrol and the Tomato Growth Promotion vol.10, pp.11, 2009, https://doi.org/10.3390/agronomy10111636
- HpaXpm, a novel harpin of Xanthomonas phaseoli pv. manihotis , acts as an elicitor with high thermal stability, reduces disease, and promotes plant growth vol.20, pp.None, 2009, https://doi.org/10.1186/s12866-019-1691-4
- Current scenario and future prospects of plant growth-promoting rhizobacteria: an economic valuable resource for the agriculture revival under stressful conditions vol.43, pp.20, 2009, https://doi.org/10.1080/01904167.2020.1799004
- Draft Genome Sequence of Bacillus amyloliquefaciens Strain CB, a Biological Control Agent and Plant Growth-Promoting Bacterium Isolated From Cotton (Gossypium L.) Rhizosphere in Coimbatore, Tamil Nadu vol.12, pp.None, 2009, https://doi.org/10.3389/fgene.2021.704165
- Diazotrophic Bacteria Pantoea dispersa and Enterobacter asburiae Promote Sugarcane Growth by Inducing Nitrogen Uptake and Defense-Related Gene Expression vol.11, pp.None, 2009, https://doi.org/10.3389/fmicb.2020.600417
- A Review on the Biotechnological Applications of the Operational Group Bacillus amyloliquefaciens vol.9, pp.3, 2021, https://doi.org/10.3390/microorganisms9030614
- Healthy Photosynthetic Mechanism Suggests ISR Elicited by Bacillus spp. in Capsicum chinense Plants Infected with PepGMV vol.10, pp.4, 2009, https://doi.org/10.3390/pathogens10040455
- Biological control of Fusarium wilt of sesame by Penicillium bilaiae 47M-1 vol.158, pp.None, 2009, https://doi.org/10.1016/j.biocontrol.2021.104601
- A Combined Nutrient/Biocontrol Agent Mixture Improve Cassava Tuber Yield and Cassava Mosaic Disease vol.11, pp.8, 2009, https://doi.org/10.3390/agronomy11081650
- Salt-Tolerant Compatible Microbial Inoculants Modulate Physio-Biochemical Responses Enhance Plant Growth, Zn Biofortification and Yield of Wheat Grown in Saline-Sodic Soil vol.18, pp.18, 2009, https://doi.org/10.3390/ijerph18189936
- Antimicrobial activity screening of rhizosphere soil bacteria from tomato and genome-based analysis of their antimicrobial biosynthetic potential vol.22, pp.1, 2009, https://doi.org/10.1186/s12864-020-07346-8
- Mechanism of resistance to Cucumber mosaic virus elicited by inoculation with Bacillus subtilis subsp. subtilis vol.78, pp.1, 2009, https://doi.org/10.1002/ps.6610
- Flagellin and elongation factor of Bacillus velezensis (VB7) reprogramme the immune response in tomato towards the management of GBNV infection vol.301, pp.None, 2009, https://doi.org/10.1016/j.jviromet.2021.114438