DOI QR코드

DOI QR Code

Pathway Analysis in HEK 293T Cells Overexpressing HIV-1 Tat and Nucleocapsid

  • Lee, Min-Joo (Department of Biological Science, Sookmyung Women's University) ;
  • Park, Jong-Hoon (Department of Biological Science, Sookmyung Women's University)
  • Published : 2009.10.31

Abstract

The human immunodeficiency virus (HIV)-l protein Tat acts as a transcription transactivator that stimulates expression of the infected viral genome. It is released from infected cells and can similarly affect neighboring cells. The nucleocapsid is an important protein that has a related significant role in early mRNA expression, and which contributes to the rapid viral replication that occurs during HIV-1 infection. To investigate the interaction between the Tat and nucleocapsid proteins, we utilized cDNA micro arrays using pTat and flag NC cotransfection in HEK 293T cells and reverse transcription-polymerase chain reaction to validate the micro array data. Four upregulated genes and nine downregulated genes were selected as candidate genes. Gene ontology analysis was conducted to define the biological process of the input genes. A proteomic approach using PathwayStudio determined the relationship between Tat and nucleocapsid; two automatically built pathways represented the interactions between the upregulated and downregulated genes. The results indicate that the up- and downregulated genes regulate HIV-1 replication and proliferation, and viral entry.

Keywords

References

  1. Albini, A., R. Soldi, D. Giunciuglio, E. Giraudo, R. Benelli, L. Primo, et al. 1996. The angiogenesis induced by HIV-1 tat protein is mediated by the Flk-1/KDR receptor on vascular endothelial cells. Nat. Med. 2: 1371-1375 https://doi.org/10.1038/nm1296-1371
  2. Bacharach, E., J. Gonsky, K. Alin, M. Orlova, and S. P. Goff. 2000. The carboxy-terminal fragment of nucleolin interacts with the nucleocapsid domain of retroviral Gag proteins and inhibits virion assembly. J. Virol. 74: 11027-11039 https://doi.org/10.1128/JVI.74.23.11027-11039.2000
  3. Belka, C., C. Gruber, V. Jendrossek, S. Wesselborg, and W. Budach. 2003. The tyrosine kinase Lck is involved in regulation of mitochondrial apoptosis pathways. Oncogene 22: 176-185 https://doi.org/10.1038/sj.onc.1206103
  4. Bettaccini, A. A., A. Baj, R. S. Accolla, F. Basolo, and A. Q. Toniolo. 2005. Proliferative activity of extracellular HIV-1 Tat protein in human epithelial cells: Expression profile of pathogenetically relevant genes. BMC Microbiol. 5: 20 https://doi.org/10.1186/1471-2180-5-20
  5. Biswas, D. K., T. R. Salas, F. Wang, C. M. Ahlers, B. J. Dezube, and A. B. Pardee. 1995. A Tat-induced auto-up-regulatory loop for superactivation of the human immunodeficiency virus type 1 promoter J. Virol. 69: 7437-7444
  6. Boshoff, C. and R. Weiss. 2002. AIDS-related malignancies. Nat. Rev. Cancer 2: 373-382 https://doi.org/10.1038/nrc797
  7. Brigati, C., M. Giacca, D. M. Noonan, and A. Albini. 2003. HIV Tat, its TARgets and the control of viral gene expression. FEMS Microbiol. Lett. 220: 57-65 https://doi.org/10.1016/S0378-1097(03)00067-3
  8. Cakmak, A. and G. Ozsoyoglu. 2007. Mining biological networks for unknown pathways. Bioinformatics 23: 2775-2783 https://doi.org/10.1093/bioinformatics/btm409
  9. Choi, J., R. M. Liu, R. K. Kundu, F. Sangiorgi, W. Wu, R. Maxson, and H. J. Forman. 2000. Molecular mechanism of decreased glutathione content in human immunodeficiency virus type 1 Tat-transgenic mice. J. Biol. Chem. 275: 3693-3698 https://doi.org/10.1074/jbc.275.5.3693
  10. Cohen, K. B. and L. Hunter. 2008. Getting started in text mining. PLoS Comput. Biol. 4: e20 https://doi.org/10.1371/journal.pcbi.0040020
  11. Dayton, A. I., J. G. Sodroski, C. A. Rosen, W. C. Goh, and W. A. Haseltine. 1986. The trans-activator gene of the human T cell lymphotropic virus type III is required for replication. Cell 44: 941-947 https://doi.org/10.1016/0092-8674(86)90017-6
  12. Deregibus, M. C., V. Cantaluppi, S. Doublier, M. F. Brizzi, I. Deambrosis, A. Albini, and G. Camussi. 2002. HIV-1-Tat protein activates phosphatidylinositol 3-kinase/AKT-dependent survival pathways in Kaposi's sarcoma cells. J. Biol. Chem. 277: 25195-25202 https://doi.org/10.1074/jbc.M200921200
  13. Ensoli, B., L. Buonaguro, G. Barillari, V. Fiorelli, R. Gendelman, R. A. Morgan, P. Wingfield, and R. C. Gallo. 1993. Release, uptake, and effects of extracellular human immunodeficiency virus type 1 Tat protein on cell growth and viral transactivation. J. Virol. 67: 277-287
  14. Fisher, A. G., M. B. Feinberg, S. F. Josephs, M. E. Harper, L. M. Marselle, G. Reyes, et al. 1986. The trans-activator gene of HTLV-III is essential for virus replication. Nature 320: 367-371 https://doi.org/10.1038/320367a0
  15. Freed, E. O. 2001. HIV-1 replication. Somat. Cell Mol. Genet. 26: 13-33 https://doi.org/10.1023/A:1021070512287
  16. Freed, E. O. and M. A. Martin. 2007. HIVs and their replication. pp. 2107, In D. M. Knipe and P. M. Howley (eds.). Fields Virology. Lippincott Williams & Wilkins, Philadelphia
  17. Ganju, R. K., N. Munshi, B. C. Nair, Z. Y. Liu, P. Gill, and J. E. Groopman. 1998. Human immunodeficiency virus Tat modulates the Flk-1/KDR receptor, mitogen-activated protein kinases, and components of focal adhesion in Kaposi's sarcoma cells. J. Virol. 72: 6131-6137
  18. Gupta, S. and D. Mitra. 2007. Human immunodeficiency virus-1 Tat protein: Immunological facets of a transcriptional activator. Indian J. Biochem. Biophys. 44: 269-275
  19. Ideker, T. and R. Sharan. 2008. Protein networks in disease. Genome Res. 18: 644-652 https://doi.org/10.1101/gr.071852.107
  20. Menegon, A., C. Leoni, F. Benfenati, and F. Valtorta. 1997. Tat protein from HIV-1 activates MAP kinase in granular neurons and glial cells from rat cerebellum. Biochem. Biophys. Res. Commun. 238: 800-805 https://doi.org/10.1006/bbrc.1997.7393
  21. Nisole, S$\acute{e}$bastien., B. Krust, and A. G. Hovanessian. 2002. Anchorage of HIV on permissive cells leads to coaggregation of viral particles with surface nucleolin at membrane raft microdomains. Exp. Cell Res. 276: 155-173 https://doi.org/10.1006/excr.2002.5522
  22. Opalenik, S. R., Q. Ding, S. R. Mallery, and J. A. Thompson. 1998. Glutathione depletion associated with the HIV-1 TAT protein mediates the extracellular appearance of acidic fibroblast growth factor. Arch. Biochem. Biophys. 351: 17-26 https://doi.org/10.1006/abbi.1997.0566
  23. Peruzzi, F. 2006. The multiple functions of HIV-1 Tat: Proliferation versus apoptosis. Front. Biosci. 11: 708-717 https://doi.org/10.2741/1829
  24. Richard, M. J., P. Guiraud, C. Didier, M. Seve, S. C. Flores, and A. Favier. 2001. Human immunodeficiency virus type 1 Tat protein impairs selenoglutathione peroxidase expression and activity by a mechanism independent of cellular selenium uptake: Consequences on cellular resistance to UV-A radiation. Arch. Biochem. Biophys. 386: 213-220 https://doi.org/10.1006/abbi.2000.2197
  25. Rusnati, M. and M. Presta. 2002. HIV-1 Tat protein and endothelium: From protein/cell interaction to AIDS-associated pathologies. Angiogenesis 5: 141-151 https://doi.org/10.1023/A:1023892223074
  26. Simon, J. H., N. C. Gaddis, R. A. Fouchier, and M. H. Malim. 1998. Evidence for a newly discovered cellular anti-HIV-1 phenotype. Nat. Med. 4: 1397-1400 https://doi.org/10.1038/3987
  27. Stephensen, C. B., G. S. Marquis, S. D. Douglas, L. A. Kruzich, and C. M. Wilson. 2007. Glutathione, glutathione peroxidase, and selenium status in HIV-positive and HIV-negative adolescents and young adults. Am. J. Clin. Nutr. 85: 173-181
  28. Treitinger, A., C. Spada, J. C. Verdi, A. F. Miranda, O. V. Oliveira, M. V. Silveira, P. Moriel, and D. S. Abdalla. 2000. Decreased antioxidant defence in individuals infected by the human immunodeficiency virus. Eur. J. Clin. Invest. 30: 454-459 https://doi.org/10.1046/j.1365-2362.2000.00642.x
  29. Wain-Hobson, S., P. Sonigo, O. Danos, S. Cole, and M. Alizon. 1985. Nucleotide sequence of the AIDS virus, LAV. Cell 40: 9-17 https://doi.org/10.1016/0092-8674(85)90303-4
  30. Webb, C., T. Lehman, K. McCord, P. Avery, and S. Dow. 2008. Oxidative stress during acute FIV infection in cats. Vet. Immunol. Immunopathol. 122: 16-24 https://doi.org/10.1016/j.vetimm.2007.11.004
  31. White, M. K., T. S. Gorrill, and K. Khalili. 2006. Reciprocal transactivation between HIV-1 and other human viruses. Virology 352: 1-13 https://doi.org/10.1016/j.virol.2006.04.006
  32. Yuryev, A., Z. Mulyukov, E. Kotelnikova, S. Maslov, S. Egorov, A. Nikitin, N. Daraselia, and I. Mazo. 2006. Automatic pathway building in biological association networks. BMC Bioinformatics 7: 171 https://doi.org/10.1186/1471-2105-7-171
  33. Zanetti, A., M. G. Lampugnani, G. Balconi, F. Breviario, M. Corada, L. Lanfrancone, and E. Dejana. 2002. Vascular endothelial growth factor induces SHC association with vascular endothelial cadherin: A potential feedback mechanism to control vascular endothelial growth factor receptor-2 signaling. Arterioscler. Thromb. Vasc. Biol. 22: 617-622 https://doi.org/10.1161/01.ATV.0000012268.84961.AD

Cited by

  1. Host Proteome Research in HIV Infection vol.8, pp.1, 2009, https://doi.org/10.1016/s1672-0229(10)60001-0
  2. Nucleolar Protein Trafficking in Response to HIV-1 Tat: Rewiring the Nucleolus vol.7, pp.11, 2009, https://doi.org/10.1371/journal.pone.0048702