Semi-automatic 3D Building Reconstruction from Uncalibrated Images

비교정 영상에서의 반자동 3차원 건물 모델링

  • 장경호 (경북대학교 전자전기컴퓨터학부) ;
  • 장재석 (경북대학교 전자전기컴퓨터학부) ;
  • 이석준 (경북대학교 전자전기컴퓨터학부) ;
  • 정순기 (경북대학교 컴퓨터공학과)
  • Published : 2009.09.30

Abstract

In this paper, we propose a semi-automatic 3D building reconstruction method using uncalibrated images which includes the facade of target building. First, we extract feature points in all images and find corresponding points between each pair of images. Second, we extract lines on each image and estimate the vanishing points. Extracted lines are grouped with respect to their corresponding vanishing points. The adjacency graph is used to organize the image sequence based on the number of corresponding points between image pairs and camera calibration is performed. The initial solid model can be generated by some user interactions using grouped lines and camera pose information. From initial solid model, a detailed building model is reconstructed by a combination of predefined basic Euler operators on half-edge data structure. Automatically computed geometric information is visualized to help user's interaction during the detail modeling process. The proposed system allow the user to get a 3D building model with less user interaction by augmenting various automatically generated geometric information.

본 논문에서는 실외에서 촬영된 비교정 영상으로부터 3차원 건물 구조를 복원하는 반자동화 방법론을 제안한다. 사용자는 관심있는 건물을 임의의 위치에서 촬영한다. 본 논문에서 제안하는 시스템은 먼저, 입력영상에 대하여 SIFT 알고리즘을 이용하여 특징점과 대응점을 추출한다. 두 번째로, 각 영상에 존재하는 선과 소실점을 추정하고, 추정된 소실점으로 추출한 선들을 그룹화 한다. 다음으로, 각 영상 간의 관계를 대응점의 개수로 정의한 인접 그래프를 이용하여 입력 영상에 대한 순서를 정의하여, 각 영상을 촬영한 카메라의 위치 정보를 보정한다. 최종적으로 추정한 카메라의 정보와 각 영상에서 그룹화된 선을 이용하여 건물의 대략적인 3차원 구조를 복원한다. 하프 에지(half-edge) 자료 구조와 오일러 연산자(Euler operator)를 이용한 상세 모델링을 수행함으로써 완성된 건물 구조를 복원할 수 있다. 본 논문에서는 자동으로 추출된 기하학적 정보를 이용하여 최소한의 사용자 입력으로 건물을 복원 할 수 있도록 하였다.

Keywords

References

  1. I. Stomas and P.K. Allen, "Automatic Registration of 2D with 3D Imagery in Urban Environment," International Conferecne on Computer Vision, pp. 731-736, 2001.
  2. S.F. El-Hakim et al, "Detailed 3D Reconstruction of Large-scale Heritage Sites Integrated Techniques," IEEE Computer Graphics and Applications, Vol.23, No.3, pp. 21-29, 2004.
  3. P.E. Debevec, C.J. Taylor and J. Malik, "Modeling and Rendering Architecture from Photographs: A hybrid geometry- and image-based approach," International Conference on Computer Graphics and Interactive Techniques, pp. 11-20, 1996.
  4. R. Cipollar, T. Drummond and D. Robertson, "Camera Calibration from Vanishing Points in Images of Architectural Scenes," The 10th British Machine Vision Conference, pp. 382-391, 1999.
  5. "Photo Modeler," Eos System, http://www.photomodeler.com/
  6. T. Sato, M. Kanhara and N. Yokoya, "Outdoor Scene Reconstruction from Multiple Image Sequences Captured by a Hand-held Video Camera," IEEE International Conference on Multisensor Fusion and Integration for Intelligent System, pp. 13-118, 2003.
  7. P. V. C. Hough, "Machine Analysis of Bubble Chamber Pictures," International Conference on High Energy Accelerators and Instrumentation, pp. 554-556, 1959.
  8. J. Illingworath and J. Kittler, "The Adaptive Hough Transform," IEEE Transaction on Pattern Analysis and Machine Intelligence, Vol.9, pp. 690-698, 1987. https://doi.org/10.1109/TPAMI.1987.4767964
  9. P. Palmer, J. Kittler and M. Petrou, "Using Focus of Attention with the Hough Transform for Accurate Line Parameter-Estimation," Pattern Recognition, Vol.27, No.1. pp. 127-134, 1994.
  10. A. Kesidis, and N. Paramarkos, "On the Inverse Hough Transform," IEEE Transaction on Pattern Analysis and Machine Intelligence, Vol.21, No.12, pp. 1329-1343. 1999. https://doi.org/10.1109/34.817411
  11. K.H. Jang and S.K. Jung, "3D City Model Generation from Ground Images," The 24th Computer Graphics International, pp. 630-638, 2006.
  12. S.C. Lee, S.K. Jung and R. Nevatia, "Automatic Integration of Facade Textures into 3D Building Models with a Projective Geometry Based Line Clustering," Computer Graphics Forum, Vol.21. pp. 511-519, 2002.
  13. 차영미, 적응적인 공선상의 에지점 그룹을 이용한 소실점 검출, 석사학위논문, 경북대학교, 2005.
  14. J. Kosecka and W. Zhang, "Efficient Computation of Vanishing Points," IEEE International Conference on Robotics and Automation, Vol.1, pp. 223-229, 2002.
  15. D. G. Lowe, "Distinctive Image Features from Scale-invariant Keypoints," International Journal of Computer Vision, Vol.60, No.2, pp. 91-110, 2004. https://doi.org/10.1023/B:VISI.0000029664.99615.94
  16. M. Fischler and R. Bolles, "RANdom SAmpling Consensus: a paradigm for model fitting with application to image analysis and automated cartography," Communications of the ACM, Vol.24, pp. 381-395, 1981. https://doi.org/10.1145/358669.358692
  17. R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, Cambridge Press, New York, 2003.
  18. E. Horowitz, S. Sahni and D. Mehta, Fundamentals of Data Structures in C++, Computer Science Press, division of W. H. Freeman, New York, 1995.
  19. M. Pollefeys, L.V. Gool, M. Vergauwen, F. Verbiest, K. Cornelis, J. Tops, R. Koch, "Visual Modeling with a Hand-held Camera," International Journal of Computer Vision, Vol.53, No.3, pp. 207-232, 2004.
  20. B. Triggs, P. Mclauchlan, R. Hartley and A. Fitzgibbon, "Bundle Adjustment - A Modern Synthesis," Lecture Notes in Computer Science, Vol.1883, pp. 298-372, 2000.
  21. Z. Li, J. Liu and X. Tang, "Shape from Regularities for Interactive 3D Reconstruction of Piecewise Planar Objects from Single Images," Proceedings of the 14th annual ACM International Conference on Multimedia pp. 85-88, 2006.
  22. M. Mantyla, An Introduction to Solid Modeling, Computer Science Press, New York, 1998.