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Abstract

This paper rcviews several multi-source localization methods which estimate ITDs based on zero crossings (ZCs). Employing

signal-to-noise ratio {SNR) estimation from JTD variances, these ZC-based source localization methods are more robust o diffuse

noise than the cross-correlation {CC)-based one with less computational complexity. In order to take reverberant environments into

account, two approaches detect intervals which dominantly contain direct-path components from sources to sensors because they

may effectively provide reliable ITDs corresponding to source dircctions. One accomplishes the detection by comparing the original

and cepstral-prefiltening-processed envelopes, and the other scarches sudden increase of acoustic cnergy by considering typical

characteristics of acoustic reverberation. Fxperiments for comparison of these methods demonstratc that the approach with

energy-based detection efficiently achieves multi-source localization in reverberant environments.
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[, Introduction

Human beings have an outstanding ability in sound
source localization, and it plays an important role to
select a particular sound source and track (he sound
originating from that source. Il is known that the
ability can be achieved by exploiling the differences
between signals obiained from both ears. The two
primary cues are inter—aural time differences (1TDs)
and inter—aural ntensity difference (IDg). 1TDs are

the main cues to deal with sound components at fre—

quencies below 1.5 kilz while IIDs can be uscd for-

higher—frequency components. The ITDs can also
be useful to localize low—irequency envelopes of higher
—frequency components [1].

In 1948, Jeffress suggested a simple and intuitive

hypothesis to estimate I'TDs based on interaural coin
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cidences in the human auditory system, and then
many researchors developed various computational
models for sound source localization [2—5], Most of
these included frequency analysis and a mechanism
for computing the interaural cross—correlation (CC)
function (o estimate ITDs n every frequency bands.
Unfortunately, the CC—based TT1) estimation methods
require high computational complexity involved n
the computation of CC, and they may sulfer from
inaccuracies in estimating the 1TDs espeaaily in
noisy multi-—-source environments since some spurious
peaks are usually generated from the computation of
CC.

In order to overcome Lthese disadvaniages of the
CC—based ITD eslimation methods, Kim et al. pre—
sented a method which compares zero crossings (ZCs)
from hand—pass signals for an accurate and efficient
cstimation of 1TDs in noisy nulti—source environments
[6]. Originally, ZCs have been used to find noisc—

robust speach leatures. FKspecially, the ZCs with peak
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amplitudes (ZCPA) modelled the neural transduction
of sound based on two parallcl mechanisms of auditory
nerve {ibers: rate and temporal representations. Ex —
perimental results showed that the ZCPA may provide
a more robust performance than some conventional
speech lecatures [7]. This is mainly due to the do—
minant frequency principle which states that the number
of ZCs per unit time is close to two times the fre—
quency of a dominant signal component when one
exists L&) [9]. In this paper, we rcview and compare
several multi—source localization methods which esti—
mate ITDs based on ZCs [6]110111).

Il. Sound source localization methods
using ZC—based ITD estimation

Basically, source localization methods require three
fundamental steps: frequency analysis, T'1T) estimation,
and histogram construction to localize sound sources.
The frequency analysis can be achieved by cochlear
fillering which is simulated by passing input signals
through a bank of Gammatone filters 4]. We con—
sidered a 25—channe! filterbank with center frequencies
spaced linearly in the equivalent reclangular band —
width from 100 Hz to 1 kHz, and it was implemented
by the approach as described in [5].

ITDs are estimated from band—pass outputs of
Gammalone filters. As mentioned above, we consider
ITD estimation which is based on ZCs. A ZC time is
detected by identifying a sample point at which a
filtered output signal changed from a negative value
to a posttive value or vice versa, and then elaborately
estimating by linear interpolation between the two
adjacent sample points that straddle the ZC. An
esbimated ITD is defined Lo be the relative time
difference belween ZCs observed from the two
SCNSOTS,

Especially, Kim ef a/, described a method to measure
the rchability of ITDs by estimating the signal—Lo
—noise ratio (SNR) and achieved robust localization
in noisy multi—source environmenis [6]. 1.cl us describe

ZC times of noisy inputs from the two sensors in a

channel by the following equations:

$2(3) = t2(3) 4 7H(5), LV

() =1 G + R (), )

where 17(j) and #7(j) represent the ZC times of
clean band—pass signals without noise from the left
and right sensors, respectively. i and j denote the
channel index of 1« Gammatone filterbank and the [TD
sample index, respectively. »£(j) and +2(j) denole
the perturbation of the ZC times due to noise from
the sensors, and they are assumed to be identically
and independently distributed with zero mean. The
true ITD between the two sensors is represented by
A7) to get

i) =+ AG). 3)

Then, the mean of the estimaled ITD At(j) is
given by

Elat ()] = EA, () +rF () —F ()] = 4,(5). (4)

If we assume that +/(;) and +#(j) are independent of
each other and have zero mean, its variance can be

derived as

Var|at, (7)) = El{At () - 4,() )]

= VarlF (1)) + VarlrF (7). ©

Kim et al. analyzed the variances Var[r2(3)] and

Var [r;’{ (#}] to show

1 1 1
92 1 nsm.:,‘( 10 syriHne |
3

Ve At { i) = {6)
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where SNR2'(j) and SNR(j) denote the SNRs of
band—pass inpuls {rom the left and righl sensors,
respectively  [6]. w;, represent the i—th channel
hand—pass input frequency. If intensity difference

between the two sensors is negligible, the common
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SNR can be obtained by

ey 1
SNRAF) = 10logy,———————.
' G wf Var|At, (7}

Eq. (7) implies that the SNR may he approximately
estimated from the variance of IT) samples and the
center frequency of the channel. The estimated SNR
can be effectively used for identifyving reliable 1T
samples 1o achieve noise—robusl sound source lo—
calization,

Finally, to get a weighted histogram, each estimated
I'TD is converted into the corresponding azimuth
angle, and its cstimated SNR value is added to a bin
including the azimuth angle. We accumulate the SNR
values for all the 1'[Ds across channels, and then
search the peaks in the histogram to identify azimuth
angles corresponding Lo source directions.

The I'TD estimation has an ambiguity in the temporal
analysis becausc of poriodicity of band—pass signals.
and the ambiguily disturbs accurate [TD estimation
more seriously as a higher frequency band is con—
sidered. Several approaches exploiled ITDs of the
signal to disambiguate it [12][13}. However, TIDs
can be easily biased especially in reverberant environ—
ments [14]. Since SNR estimation can identify reliable
ITD samples from obscrvations contaminated by diffuse
noise, we employ onfy the ITDs to localize sound
sources. In order (o avoid the ambiguity in [T1) es—
timation without cxploiting 1IDs, we make use of
closely spaced sensors so that the largest possible
ITDs between the sensors are always less than half
a period over all considered frequencics. Therefore,
the closest zero crossings across sensors provide
the desited UTD value. As a resull, the closely spaced
sensors can localize sound sources with a simple
implementation because they do not need disambiguation
n ITD estimation. Also, they are appropriate for
compact implementation, and the estimated 1TDs
might be mare reliable because the distortion between

sensor inputs 1s small.

i, Localization methods in reverberant
environments

Although ZC—based ITDs with the SNR estimation
can provide desired source directions from observations
corrupted by diffuse noise, many practical applications
involve acoustic reverberation, and sound sources
should be successfully localized i these reverberant
environments. Unfortunately, it is known that the rever —
beration significantly degrades localization accuracy
113, Signal components through direct paths from
sources to sensors generate ['TDs which correspond
to sound source directions whereas reflection com~—
ponents interfere with the desired TTDs. Here, we
consider two noticeable 7C—based approaches to sound
source localization in reverberant environments [10]

[11].

3.1. A method using a cepstral prefiltering
technique [10]
This method starts from reducing the effect of
reverberation in observations. If diffuse noise can be
ignored. the mixture signals of microphones can then

be expressed as follows:
z(n) = hin) k sin}, : (R

where h{n) and s(n) represent the source signal and
the transmission channel between the source and
each of microphones, respectively. x denotes the
operaltion of convolution. The complex cepstrum of
this signal is defined as [16]

a(k) = F logX(w)} X (9
=+ Hiog{H(w} S )= h(k) + s(k),

where X(w), H(w) and S(w) are the Fourier (rans—
forms of a(n). k(n} and s(n), respectively, F71{+}
represents the inverse Fourier transform, and (k)
and s(&) are the cepstrum value of A(n) and s(n},
respectively.

In the frequency domain, the room impulse res—
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ponse Hlw) can be decomposed into a minimum
—phase component (MPC) and an all—pass component
(APC) [16].

Hlw) = H,(w) H,, (w). (10)

While H,,(w) corresponding to APC is related to time
delay, A, (w) corresponding to MPC is the com—
ponent which makes the distortion of the speech
signal by reverberant terms. If we compute the
cepstrum of Eq. (10), we can represent that

Rk) = by, (k) + Ry (K), (11)

where ﬁ‘,p(k) and ﬁ.,m.,,(k) can be computed by their

properties of symmetry as follows:

X hlk), k<0,
By (K) ={0, X k=0, (12)
_h(_k’), k>03
and
) 0, k<0,
P () ={ﬁ.(k), A k=0, (13
h(k) +h{~k), k> 0.

Using (9) and (11), we can represent the cepstrum
of microphone signal as

(k) = by, (k) + b (k) + $(k). (14)

As Eq. (14) reveals, we can accurately estimate the
time delay between a signal and a microphone to
localize sound sources by preventing speech signal
from the distortion by reverberation, which may
result from subtracting and eliminating the MPC part
of the channel cepstra from the whole microphcne
cepstra. Note that computing the cepstra is pro—
cessed on a frame by frame basis. Usually because
of the non—stationary property of speech signal, the
MPC of speech cepstra varies in each frame but the
MPC of channel cepstra does not vary a lot by the
fixed location of a source and a microphone. Assuming
that the MPC of the speech cepstra is zero mean, the

MPC of the channel cepstra can be computed by
averaging the MPC of microphone cepstra recursively
for input frames, The MPC of the channel cepstra

denoted by k., (k) is subtracted from the microphone

cepstra z(k). The obtained cepstra information is
transformed back to the time domain. Finally we can
get a new signal with less reverberant effect [17].

In reverberant environments, we should compute
the ITDs corresponding to the accurate direction of
sources which are determined by the signal com-—
ponents through the direct paths from sources to
microphones. By comparing the envelopes of an original
signal and cepstral—prefiltering—processed signal,
we can detect intervals which are dominated by the
direct paths. In the intervals affected by reverberation,
the resuiting envelope of the cepstral prefiltering is
smaller than the original one since the cepstral pre—
filtering technique reduces the effect of reverberation
by subtracting the MPCs of the acoustic channel cepstra,
Therefore, we can detect the intervals dominated by
the direct—path components as follows:

E(n) £(n)
Bty < T mizmy):

(15)
Here, m( ) denotes the median value. Z{n) denotes
the +—th channel smoothened envelope which is the
moving average values given by

1 N
mk;Nei ('ﬂ.+k), (16)

E{n)=
where e;{n) is an instantaneous envelope and N
determines the number of envelopes to be averaged.
The envelope can be obtained by the magnitude of
a Gammatone filter output after replacing the cosine
term with a complex sinusoid [5,18]. Also, E,(n)
represent the envelope for a processed signal. The
second condition is for avoiding intervals with too
small energy. Accordingly, we can approximately es—
timate intervals dominated by direct—path components
and then find the accurate starting and ending points
of the intervals. Comparing tc reverberant—path signals,
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a direct path is short, so the signal through this path
reaches the microphone faster, Therefore, it is effec—
tive to find onset intervals which contain fewer re—
flection components. The accurale starting point is
chosen by the time which has the minimum envelope
value in a perind of duration ¥ before the estimaled
duration by Eq. (15). On the other hand, the ending
point is selected by the time at the maximum envelope
value in a period of duration 7 after the eslimated
duration by Eq. (15).

It is possible to estimate accurate source direction
by selecting ITDs only in the intervals detected
above. Hence, we first obtain output signal through
a Gammatone filterbank and then construct a weighted
histogram from the I'TDs based on zero crossings
only in the intervals detected by the cepstral pre—
filtering 1echnique,

Even though this approach detlects the intervals
elaborately, it may still contain reflection components
primarily due to late reflections. That is because lots
of impulse responses of acoustic reverberation have
so long tails that signal components from late re—
flections arc frequently overlapped with the onset
parts. Therefore, we need to discriminate and neglect
ITDs affected by late reflection components even
though they are in onset parts. Usually, late re—
flections are very close to one another, and these
reflections generate different ITDs corresponding Lo
different paths. Therefore, an ITD from input signals
reverberated by the late reflections is usually di—
fferent even from adjacent ones, and the variance of
ITDs may estimate how much the current input signal
is contaminated by late reflection components. Kim
et al. [6] estimated the SNR from the variance of ITD
samples in a window which is given by Eq. (7), but
here the SNIR estimation method is emploved to

measure how much late reflection components interfere
with ITDs.

3.2. A method using energy—based detection
of onset intervals [11]
Although the previous approach can improve esti~

mation of source directions by reducing the effect of

reverberant componenis and comparing Lhe original
and cepstral—prefiltering—processed envelopes., It
requires g greal deal of addilional computations to
estimale the reverberant components. In addition.
remaming reverberant components still significantly
disturb source localization, which may resull in a
limit in the performance improvement.

In order to accomplish efficient sound source lo=
calization in reverberant environmenis, we have to
elaborately select [TDs from signal components through
direct paths {rom sources to sensors, which corres~
pond to the directions of sources. Figure 1 illustrates
the overall procedure of the approach. Intervals which
may dominantly contain the direct components generally
correspond to the onset parts of inpul signal.

tlere, we also detect the intervals by employing
the cnvelope of a Gammatone filter oulput. Since a
large ratio between current and previous smoothened
envelopes generally corresponds to an onset of a
signal, il can be detcrmined by

£ n)

(2 > Th,, (16)
where An represents the time difference hetween
the current and previous envelopes.

Once an onset 15 delected, we need to refine an
efaborated segment which may provide ITDs corres—
ponding to a source direction. The exact slarting
point is chosen by the time which has the minimum

envclope value in a perjod of duration 7 before a

: SR asttion

Figure 1. Qverall procedure of the multiple sound source l0-
calization based on zero-crossings with detecting
onset durations.
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detected onset interval because direct components
of a signal suddenly increase acoustic energy in con—
trast with reflection components. On the other hand,
the exact ending point is selected by the time at the
maximum envelope value in a period of duration 7
after a detected onset interval, due to the fact that
a signal after the maximum envelope value may contain
many reflection components.

Similar to the previous approach, this methed also
employs the SNR estimation to discriminate ['I'Ds
which are affected by late reflection components
even though (he onsect interval is carefully refined.

Note that the detectlion of direct componentls based
on onset and SNR estimation is much simpler and
more efficient than the dereverberation or channel
estimation methods including the previous approach
based on the cepstral prefiltering technique [171119
—21]. In addition, this method using energy—based
detection of onset intervals should be combined with
ZC—hased 1D estimation because the onset detection
requires 1'TD estimations at specific time indices so
as to select [TDs strictly in onset parts and the SNR
estimation needs a number of I'TDs in a short interval

s0 as to estimate reliable sample variances.

V. Experimental results

We have compared the presented methods in the
following experimental setup. The reverberated signal
at a sensor from a source was oblained by con—
volving the source signal with an impulse responsce
which simulates acoustics from the source to the
sensor |22], and an observation was created by com —
bining all reverberaled signals at a sensor. Figure 2
represents a configuralion of sources and sensors
used in the experiment. The reflection coefficients
were chosen to provide the reverberation time 27,
of 0.3 and 0.5 seconds. Each source signal was
concatenated sentences uttered by a speaker from
the TIMIT database [23], and its sampling rate was
16 kHz. Since we simulated signal measurement

[rom the sensors which were nominally separated by

4m)

5m

Figure 2. A configuration of sources and microphones in a
rectangular room. The simulated height of the room
was 3 m, and the height of all sources and micro-
phones was 1.1 m.

Table 1. Parameter values in the experiments.

Parameter Th, ‘Th, An N T
Value 06 25 1ms 1.5ms | 10 ms

43 mm (o avoid spatial aliasing up to 4 kllz, the
sampling period is too coarse to get a sufficient
asimuthal resolution for the simulated reverberant
filters. Thus, source signals were upsampled to 1,024
kllz and convolved with the reverberant filters which
were originally gencrated al the 1,024 -kHz sampling
rate. After combining all the convolved signals al a
sensor. the resulling signal was downsampled back
to 16 kHz.

To cvaluate these methods for sound source lo—
calization, we have used the parameler values in Table
l. Also, we estimated an SNR [or each ITD by
calculating the sampling variance in a window of 5
7Cs since an onset mterval is usually quite short.
Also, hislograms were composed of [TDs whose
estimated SNRs were greater than 30 dB, and their
azimuthal resolution was 1°.

[Figure 3 presents the histograms for sound source
localizalion using observations as described above
when the reverberation time is 0.3 sec. Figure 3(a)
shows the result for the basic ZC—based method
without any further procedure to handle reverberated
signals. Figures 3(b) and (c) displays the resulls for
the ZC—hased methods using the cepstral prefiltering
technique and the c¢nergy—bascd onset detection,
respeclively. Although the ccepstral prefiltering tech—~
nique improved Lhe localization performance by reducing
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Figure 3. Weighled histograms for sound source localization in
a reverberant environment with 275, = 0.3 sec,
{a) Basic method,
{b) Using the cepstral prefiltering technique,
{c) Using the energy-based onset detection.

reverberant components, hislograms obtained by the
method using the energy—based onset detection dis~
played two distinct peaks corresponding Lo the azimuths
of sources. This was due to the fact that this method
effectively identificd intervals which wore not conta—
minated by reverberation and constructed a histogram
from the intervals to estimate desired source directions.
We repeated the experiments for a 0.5-~sce reverberalion
time and the methad using the cnergy—bascd onset
detlection could localize all the sources successfully

as shown in Hig. 1.

x 10
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0 30
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Figure 4. Weighted histograms for sound source localization in
a reverberant environment with R 73, =0.5 sec,
{a) Basic method,
{b) Using the cepstral prefiltering technique,
{c) Using the energy-based onsel detection.

V. Concluding remarks

In this paper, we have reviewed and compared
three ZC—based methods to localize multiple sound
sources. To achieve robustness for observations con—
taminated by diffuse noises, these methods could
construct weighted histograms by employing SNR
estimation based on ITD vanances. The cepstral pre—
filtering technique tried o remove reverberant com—
ponents directly so that the histograms werc not

allected by reverberation. Especially, the method
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using the energy—bascd onset detection could provide
distinct peaks corresponding to source directions by
successiully sclecting intervals where signal components
through direct paths are dominant. Comparison of
these methods was conlirmed by simulations.
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