강변여과수 개발지역 우물 개량시 철망간 저감 효과

Iron and Manganese Removal through Well Development at River Bank Filtration Site

  • 김규범 (한국수자원공사 K-water연구원 지하수 연구팀) ;
  • 김병우 (한국수자원공사 K-water연구원 지하수 연구팀) ;
  • 신선호 (한국수자원공사 K-water연구원 지하수 연구팀) ;
  • 박준형 (한국수자원공사 K-water연구원 지하수 연구팀)
  • 발행 : 2009.09.30

초록

낙동강 주변에 위치한 일부 충적층에서의 철과 망간은 음용수 기준치(각각 0.3 mg/L)를 초과하고 있으며, 강변여과 취수개발 및 이용을 제한하는 요인으로 나타나고 있다. 본 연구에서 사용된 서적블록 및 에어서징 기술은 자갈층에 충진된 슬라임을 제거함으로서 관정 주변의 투수성을 높일 뿐 만 아니라 대수층을 산화 환경으로 만들 수 있고, 대수층에서 생성된 철과 망간의 산화물들을 관정내로 빼낼 수 있는 방법이다. 이와 같이 서징에 따른 철과 망간의 제거효율을 검토한 결과, $Fe_{(total)}$$Fe^{2+}$이온 농도는 서징 전과 비교하여 $5{\sim}8$배 및 $5{\sim}9$배 정도 줄어들었고, $Mn^{2+}$이온농도는 약 10배의 저감 효과가 나타났으며, 철산화물($Fe_2O_3$)은 약 1.2배, 망간산화물(MnO)은 약 $1{\sim}1.2$배 증가하였다. 이와 같이 대수층내 공기 주입을 통한 철과 망간 이온농도의 저감은 효과가 있는 것으로 나타나 향후 국내에서도 강변여과수의 철 망간 제거를 위하여 대수층내 직접 처리 기술의 도입이 필요한 것으로 평가되었다.

Iron and manganese contents are usually over the limit of drinking water standard (0.3 mg/L) in unconsolidated aquifer of river bank filtration site in Nakdong river. Surge block and air surging techniques used in this study are useful tools to remove the slime within gravels and pebbles, to increase permeability of aquifer, to provide oxygen into aquifer, and to discharge iron and manganese oxides from a well. Surging activity brought about $5{\sim}8$ and $5{\sim}9$ times decreases in $Fe_{(total)}$ and $Fe^{2+}$ contents, and also 10 times decrease in $Mn^{2+}$ contents compared to non-surging condition, respectively. Additionally, iron oxide and manganese oxide increased up $1{\sim}1.2$ times after surging. This result shows that air injection into the aquifer can help iron and manganese content decreased and in-situ treatment technology needs to be introduced in river bank filtration project in South Korea.

키워드

참고문헌

  1. 김남장, 이규홍, 1964, 한국지질도 영산도폭(1:50,000), 국립지질조사소
  2. 한원식, 우남칠, 이기철, 이광식, 2002, 무주지역 수질특성자료의 통계학적 분석에 의한 소유역 구분, 한국지하수토양환경학회, 7(3), 19-32
  3. Appelo, C.A.J., Drever, B., Hekkenberg, R., and de Jonge, M., 1999, Modeling in situ iron removal from groundwater, Ground Water, 37, 811-817 https://doi.org/10.1111/j.1745-6584.1999.tb01179.x
  4. Bourg, A.C.M., Bertin, C., 1994, Quantitative appraisal of biogeochemical processes during the infiltration of river water into an alluvial aquifer, Environmental Science & Technology, 27, 661-666 https://doi.org/10.1021/es00041a009
  5. Bourg, A.C.M., Kedziorek, M.A.M., and Darmendrail, D., 2002, Organic matter as the driving force in the solubilisation of Fe and Mn during river water infiltration. In: Ray, C. (Ed.), Understanding contaminant Biogeochemistry and Pathogen Removal. Kluwer, 43-54
  6. Doussan,m C., Poitevin, G., Ledoux, E., Detay, M., 1997, River bank filtration: modelling of the changes in water chemistry with emphasis on nitrogen species, Journal of Contaminant Hydrology, 25(2) 129-156 https://doi.org/10.1016/S0169-7722(96)00024-1
  7. Grischeck, T., Hiscock, K.M., Metschies, T., Dennis, P.F., Nestler, W., 1998, Factors affecting denitrification during infiltration of river water into a sand and gravel aquifer in saxony, Germany. Water research. 32(2), 450-460 https://doi.org/10.1016/S0043-1354(97)00208-X
  8. Hallberg R. O. and Martinell R., 1976, Vyredox-In Situ Purification of Ground Water, Ground Water, 88-93 https://doi.org/10.1111/j.1745-6584.1976.tb03638.x
  9. Hiscock, K.M., Grischek, T., 2002, Attenuation of groundwater pollution by bank filtration. Sci. Technol. 28, 153-159
  10. Houben G., 2004, Modeling the Buildup of Iron Oxide Encrustations in wells, Ground Water, 42(1), 78-82 https://doi.org/10.1111/j.1745-6584.2004.tb02452.x
  11. Jacob, H., Von Gunten, H.R., Keil, R., Kuslys, M., 1988, Geochemical changes along a river groundwater infiltration flow path: Glattfelden, Switzerland. Geochimica et Cosmochimica Acta; (USA); 52, 2693-2706 https://doi.org/10.1016/0016-7037(88)90038-5
  12. Kedziorer, M.A.M., and Bourg, A.C.M., 2009, Electron trapping capacity of dissolved oxygen and nitrate to evaluate Mn and Fe reductive dissolution in alluvial aquifers during riverbank filtration, Journal of Hydrology, 365, 74-78 https://doi.org/10.1016/j.jhydrol.2008.11.020
  13. Mettler, S. Abdelmoula, M., Hoehn, E., Schoenenberger, R., Weidler, P., and Von Gunten, U., 2001, Characterization of Iron and Manganese Precipitates from an In Situ Ground Water Treatment Plant, Ground Water, 39(6), 921-930 https://doi.org/10.1111/j.1745-6584.2001.tb02480.x
  14. Ray, C., Soong, T.W., Lian, Y.Q., Roadcap, G.S., 2002, Dffect of flood-induced chemical load on filtrate quality at bank filtration sites, Journal of Hydrology, 266, 235-258 https://doi.org/10.1016/S0022-1694(02)00168-3
  15. Schwarzenbach, R.P., Giger, W., Hoehn, E., Schneldeer, J.K., 1983, Behavior of organic compounds during infiltration of river water to groundwater: field studies, Environmental Science & Technology, 17, 472-479 https://doi.org/10.1021/es00114a007
  16. Sharma, S. K., 2001, Comparison of physicochemical iron removal mechanisms in filters. In: Journal of water supply: Research and Technology aqua, 187-198
  17. Fan Maogong, 1988, The application of vyredox method regarding iron removal from ground water in China, Groundwater, 26(5), 647-648 https://doi.org/10.1111/j.1745-6584.1988.tb00799.x
  18. Von Gunter, H.R., Karametaxas, G., Keil, R., 1994, Chemical processes in infiltrated riverbed sediments, Environmental Science & Technology, 28, 2087-2093 https://doi.org/10.1021/es00061a017