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Abstract
In this paper, we review the utility-based generalization of the Shannon entropy and Kullback-Leibler infor-
mation measure as the U-entropy and the U-relative entropy that was introduced by Friedman et al. (2007). Then,

we derive some relations between the U-relative entropy and other information measures based on a parametric
family of utility functions.
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1. Introduction

Distance measures between two probability distributions play an important role in probability theory
and statistical inference. For the first time, the concept of measuring distance between two probabil-
ity distributions was developed by Mahalanobis (1963). A class of measure which may not satisfy
all the conditions of distance measures or metric space is called divergence measures. Divergence
measures based on the idea of information-theoretic entropy was initially introduced in communi-
cation theory by Shannon (1948) and later in Cybernetics by Wiener (1949). Kullback and Leibler
(1951) introduced relative entropy or the divergence measures between two probability distributions
as a generalization of the Shannon entropy. During the half past century, various extensions of the
Shannon entropy and Kullback-Leibler divergence measures are introduced by Renyi (1961), Ali and
Silvey (1966), Havrda and Charvét (1967), Csiszar (1967), Sharma and Mittal (1977), Burbea and
Rao (1982), Rao (1982), Kapur (1984), Vajda (1989), Lin (1991), Pardo (1993), Shioya and Da-te
(1995).

Dragomir (2003) introduced the concept of p-Logarithmic and a-power divergence measures and
derived a number of basic results.

Friedman and Sandow (2003) introduced a utility-based generalization of Shannon entropy and
Kullback-Leibler information measures. Friedman et al. (2007) proved various properties for these
generalized quantities similar to the Kullback-Leibler information measure.

In this paper, we review utility-based motivations and generalizations of the Shannon entropy and
Kullback-Leibler information measures. Then, we introduce a version of the power utility function of
the first kind and derive a number of its basic properties. Finally, we obtain a utility-based divergence

measure by using of the power utility function of the first kind and find its links with other divergence
measures.
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2. Preliminaries

Let X be a discrete random variable with support y and probability mass function p(x) = P(X = x),
x € x, Shannon entropy H(p) is defined by:

H(p)=-) p®h(px).

XEY

Shannon entropy measures lack of uniformity (concentration of probabilities) under p(x), x € x.
Let p(x) and g(x) on the support y be two probability mass functions of random variable X. The
fundamental information measure for comparing the two distributions is given by Kullback-Leibler

as.
_ px)
K(p,q) = %}p(x)ln(—q(x)).

It is well known that, K(p, g) is nonnegative and zero if and only if, p = g.

There are various versions on generalization of Shannon entropy and Kullback-Leibler informa-
tion measure. A general class of divergence measures is called the Csiszar f-divergence, that is
introduced by Csiszar (1967) and is defined as:

p (x))

Df(p,q)=2p(x)f(m ;

xe€x

where f(x) is convex on (0, co) such that, f(1) = 0 and strictly convex at x = 1. Csiszar f-divergence
includes several divergences used in measuring the distance between two probability distributions.
For f(x) = —In(x), f(x) = (x - 1)?> and f(x) = (1 — x'#)/(1 - B), we have Kullback-Leibler, y>-
divergence and S-class divergence measures, respectively.

The @ and S-classes of divergence measures are:

a-17
H,(p,q9) = 1 ln[Ep(&) , a#l,a>0

a-1 q(X)
and P
1 POY
Hg (p, )=—E(—) -1|, B#1,8>0,
respectively.

Friedman et al. (2007) introduced a decision theoretic, i.e., utility-based, motivation and general-
ization for the Shannon entropy and Kullback-Leibler information measure and called them U-entropy
and U-relative entropy.

2.1. Utility functions

Investor’s subjective probabilities are numerical representations of his beliefs and information. His
utilities are numerical representations of his tastes and preferences. Utility functions give us a way to
measure investor’s preferences for wealth and the amount of risk to undertake in the hope of attaining
greater wealth. It also measures an investor’s relative preference for different levels of total wealth.

Definition 1. A utility function is a function of wealth U(x) that is a strictly monotone increasing and
strictly concave function of x.
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This implies that U’(x) > 0 and U”(x) < 0. It is easy to see that if U(x) is a utility function, then
for constant @ > 0 and b, the function W(x) = aU(x) + b is also a utility function. The utility
functions of most people tend to be concave, at least for large gains or large losses. A person with a
strictly concave utility function is called a risk averter. For any utility function U(x), we consider the
following function:
U” (x)
U'(x)
This function is called absolute risk aversion function. It is obvious that R(x) > 0. It is also generally
agreed in finance theory that for a utility function to be realistic with regard to economic behavior, its
absolute risk aversion should be a decreasing function of wealth.

The most common utility functions are as follows:

R(x)=-

o Exponential utility function with parameter o > 0,

l_e—llx
Ux) = , =—00< X< 00,
a

note that the utility tends to the finite value 1/ as x — oo.
¢ Logarithmic utility function with parameters a > 0, 8, v,
Ux)=aln(x-PH+y, x>p

 Iso-Elastic utility function is a class of utility functions as follows:

x"—l, a<l, a#0,
Ux)= a
In(x), a=0.

This class has the property of U(kx) = f(k)U(x) + g(k), for all £ > 0 and for some function
Sf(k) > 0 and g(k) which are independent of x.

o Linex utility function with parameters @ > 0, 8 > 0, y > 0, is introduced by Bell (1988, 1995),
as:

Ux)=ax—-Be .
¢ Power utility function of the first kind is a two parametric family of utility functions as:
P — (@ — x)PH X B
B+De?  a o«
For 8 = 1 leads to quadratic utility function of the form, U(x) = x — x2/2a), x < a.
By setting a = 1, b = —U(1), aU(x) + b is also a utility function as:

(@-1P"1—(@-xf"  x B

Ux)= > 0.

Ux)= , —<1,=>0. 2.1
@) B+1af a a @D
e Power utility function of the second kind is another class of utility functions as:
xl—a _
Ux)= , x>0,a>0,a#1.
1-a

We note that U (x) = In (x), is the limiting case of this utility as @ — 1.
See for example Gerber and Pafumi (1999), Conniffe (2007) and Johnson (2007).
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2.2. U-entropy and U-relative entropy

The principle of expected utility maximization states that a rational investor acts to select an invest-
ment which maximizes his expected utility of wealth based on the model he believes (see, for example,
Theorem 3, p.31 of Ingersoll, 1987).

Friedman et al. (2007) used this to make utility-based generalization of the Shannon entropy and
Kullback-Leibler information measure and gave the following definitions.

Definition 2. Let X be a discrete random variable with finite support y and p(x), g(x) be two proba-
bility measures on x. The U-relative entropy from the probability measure p(x) to probability measure
g(x) is given by:

_ b(x)
Dy (p,q) = sgﬂ}:xzex:p(x) U(m),

where, U(x) is a utility function and
By = {b: Zb(x) = 1}.
x€y

We note that this optimality is yield for

b = b5 () = g (1) (U (2‘1 ((xx))), 2.2)

where, A is the solution of the following equation:

o1 Aq(x))=1
équ)(v) (P(x) :

Definition 3. The U-entropy of the probability measure p(x) is given by:

1
Hy(p) = U(L\(I)—Du(P,m)-

In the special case, when q(x) has discrete uniform distribution on the finite support y, we consider
q(x) = 1/|x|, where |x| is the cardinality of the finite set y. For U(x) = In(x), the above definitions are
reduced to Kullback - Leibler divergence measure and the Shannon entropy, respectively.

Theorem 1. The generalized relative entropy, Dy(p, q) and the generalized entropy, Hy(p), have
the following properties:

(i) Dy(p,q) 2 0 with equality if and only if p = g,
(it} Dy(p, q) is a strictly convex function of p,
(iii) Hy(P) >0, Hy(P) is a strictly concave function of p.

Proof: See Friedman et al. (2007). |
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3. Main Results

We consider the power utility function of the first kind again. Setting @ = —1/8 and 8 = /6, in it
leads to the following:

(1+6x)F -1

Upa(x) = -1 ,

1+6x>0,1>0, 0€R. 3.1

Note that for a = 1 and b = —Uy4(1), aUy, (x) + b is also a utility function as:

(1+607 -1 +6)%F

Uga(x) = ) ,

1+0x>0,1>0,€R. 3.2)

The following properties are noticeable:

The absolute risk aversion of (3.1) is R(x) = A/(1 + x). It is decreasing for reasonable value
of 8 > 0, but the absolute risk aversion of the power utility function of the first kind is R(x) =
B/(a — x), that is increasing for reasonable value of 8 > 0.

U(0) = 0 and U’(0) = 1, therefore the graph of U passes through the origin with slope one.
For any fixed 0, we have,
. 1
}11_)11; Ug,,l (x) = 5 In(1 + 8x)
and for any fixed A, we have,
. 1
})1_13 Uga(x) = 1 In(1 + Ax),
where for the positive values of 4 and A, are logarithmic utility functions.

For any fixed A > 0, we obtain,
llm D (x) = _1 (1 — € )
8,4 1 ’

where for the positive values of A is an exponential utility function.

It is easy to show that for fixed 2 > 0, we have,

lim Ug,,l ()C) =X.
- t00

The inverse function of Uy ; (x) as follows:

{1+ -7 - 1
; :

Uz (x) =

Therefore, by setting € in place of 2 — 6 and x in place of —x in Ug, (x), we obtain, U, /11 (x) =
—Us-9.4(=x) and Ug 4 (~Up- (1)) = x.

Now we consider power utility function of the first kind and introduce a parametric divergence
measure that is linked with other important divergence measures.
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Theorem 2. If the utility function be as in (2.1), then the corresponding utility divergence measure

is given by:
(a- 1+ q{x)
DU(P7q)_ (ﬂ+1)aﬁ l: {Z ( )(p(X)) } :|

X€y

Proof: Consider the utility function (2.1), then we have,
W) @W=a(1- %)

By setting (U’)~!(x) in (2.2), we obtain:
* g ()
bp<x)=aq<x>{1-(p(x)) }

w28y

xEX

in which,

H
/—H

After some calculation, we obtain:
-5
_(a-1)p! q(x))
Dy (p.g) = (ﬂﬂ)aﬁl {Z ()( = .

Corollary 1. Let @ = g and 8 — oo, we have,

Jim Dy(p,q) = (1 - P = —ID(p, .

where 1D(p, q), is the ID Index as mentioned in Soofi et al. (1995).
Corollary 2. If8 = -2 and a = —1/2(1 + V5) then,

2
Dy (p.g)=1- (Z VP <x>q(x)] = 1 - (Da(p. 9.

X€y

where, Dg(p, q), is the Bhattacharyya distance measure.

Corollary 3. When @ = —1 and B — -1 we have,
Aim Dy(p,q) = K(p. q),

in which K(p, q), is the Kullback-Leibler information measure.
Corollary 4. 8 = 1 and a = 2 + V2, implies that,

D, (p.q)

D b = —_—’
vipq) Do (p.g)+1
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in which,

_ 2
o= 3, PO,

XEy

is the y*-divergence measure.

Corollary 5. By setting 8 = —1/k and @ = —1, we have,

Dy (p.q) = ekH(”q)) k#1, k>0,

L(
1-kV2

in which, Hy (p, q) is the k-Renyi divergence measure with the following form:

X k-1
Hk(P,‘I)=k—é—1‘ln{Ep(%) } k#1, k>0.

Corollary 6. If the utility function be as in (3.2), then the corresponding utility divergence measure

is given by:
1+ ) a (x)
Du(p,q)—( {Z ()(q() - 1}.
e pix
Proof: Via the similar arguments in proof of Theorem 2, on choosing § = —1/a and 2 = B/« the
divergence measures simply is proved. O
Conclusions

In this paper, we derive a version of the power utility function of the first kind and its basic properties.
Also, we obtain a utility-based divergence measure by using of the power utility function of the first
kind and find relationships with some other divergence measures.
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