DOI QR코드

DOI QR Code

Combination of Value-at-Risk Models with Support Vector Machine

서포트벡터기계를 이용한 VaR 모형의 결합

  • 김용태 (단국대학교 정보통계학과) ;
  • 심주용 (대구가톨릭대학교 응용통계학과) ;
  • 이장택 (단국대학교 정보통계학과) ;
  • 황창하 (단국대학교 정보통계학과)
  • Published : 2009.09.30

Abstract

Value-at-Risk(VaR) has been used as an important tool to measure the market risk. However, the selection of the VaR models is controversial. This paper proposes VaR forecast combinations using support vector machine quantile regression instead of selecting a single model out of historical simulation and GARCH.

VaR(Value-at-Risk)는 시장위험을 측정하기 위한 중요한 도구로 사용되고 있다. 그러나 적절한 VaR 모형의 선택에는 논란의 여지가 많다. 본 논문에서는 특정 모형을 선택하여 VaR 예측값을 구하는 대신 대표적으로 많이 사용되는 두개의 VaR 모형인 역사적 모의실험과 GARCH 모형의 예측값들을 서포트벡터기계 분위수 회귀모형을 이용하여 결합하는 방법을 제안한다.

Keywords

References

  1. Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity, Journal of Econometrics, 31, 307-327 https://doi.org/10.1016/0304-4076(86)90063-1
  2. Gunn, S. (1998). Support vector machines for classification and regression, ISIS Technical Report, Uni-versity of Southampton
  3. Hwang, C. and Shim, J. (2005). A simple quantile regression via support vector machine, Lecture Notes in Computer Science, 3610, 512-520 https://doi.org/10.1007/11539087_66
  4. Jorion, P. (2007). Value at Risk: The New Benchmark for Managing Financial Risk, McGraw-Hill, New York
  5. Koenker, R. and Bassett, G. (1978). Regression quantiles, Econometrica, 46, 33-50 https://doi.org/10.2307/1913643
  6. Mercer, J. (1909). Functions of positive and negative type, and their connection with the theory of integral equations, Philosophical Transactions of the Royal Society of London. Series A, 299, 415-446 https://doi.org/10.1098/rsta.1909.0016
  7. Nychka, D., Gray, G., Haaland, P., Martin, D. and O’Connell, M. (1995). A nonparametric regression approach to syringe grading for quality improvement, Journal of the American Statistical Association, 90, 1171-1178 https://doi.org/10.2307/2291509
  8. Ozun, A. and Cifter, A. (2007). Nonlinear combination of financial forecast with genetic algorithm, MPRA Paper, No.2488
  9. Palit, A. K. and Popovic, D. (2000). Nonlinear combination of forecasts using artificial neural network, fuzzy logic and neuro-fuzzy approach, FUZZ-IEEE, 2, 566-571 https://doi.org/10.1109/FUZZY.2000.839055
  10. Seok, K., Hwang, C. and Cho, D. (1999). Kernel adatron algorithm for support vector regression, Commu-nications of the Korean Statistical Society, 6, 843-847
  11. Shim, J., Hwang, C. and Hong, D. H. (2009). Fuzzy semiparametric support vector regression for seasonal time series analysis, Communications of the Korean Statistical Society, 16, 335-348 https://doi.org/10.5351/CKSS.2009.16.2.335
  12. Smola, A. J. and Scholkopf, B. (1998). A tutorial on support vector regression, NeuroCOLT2 Technical Report, NeuroCOLT
  13. Vapnik, V. N. (1998). Statistical Learning Theory, Springer
  14. Yuan, M. (2006). GACV for quantile smoothing splines, Computational Statistics & Data Analysis, 50, 813-829 https://doi.org/10.1016/j.csda.2004.10.008