Cu-Cu 열압착 웨이퍼 접합부의 계면접합강도에 미치는 $N_2+H_2$ 분위기 열처리의 영향

Effect of $N_2+H_2$ Forming Gas Annealing on the Interfacial Bonding Strength of Cu-Cu thermo-compression Bonded Interfaces

  • 장은정 (국립안동대학교 신소재공학부 청정소재기술연구센터) ;
  • 김재원 (국립안동대학교 신소재공학부 청정소재기술연구센터) ;
  • ;
  • ;
  • 현승민 (한국기계연구원 나노융합기계연구본부) ;
  • 이학주 (한국기계연구원 나노융합기계연구본부) ;
  • 박영배 (국립안동대학교 신소재공학부 청정소재기술연구센터)
  • Jang, Eun-Jung (The Center for Green Materials Technology, School of Advanced Materials Engineering, Andong National University) ;
  • Kim, Jae-Won (The Center for Green Materials Technology, School of Advanced Materials Engineering, Andong National University) ;
  • Kim, Bioh (EV Group) ;
  • Matthias, Thorsten (EV Group) ;
  • Hyun, Seung-Min (Nano-Mechanical System Rearch Division, Korea Institute of Machinery & Materials) ;
  • Lee, Hak-Joo (Nano-Mechanical System Rearch Division, Korea Institute of Machinery & Materials) ;
  • Park, Young-Bae (The Center for Green Materials Technology, School of Advanced Materials Engineering, Andong National University)
  • 발행 : 2009.09.30

초록

3차원 소자 집적을 위한 저온접합 공정 개발을 위해 Cu-Cu 열 압착 접합을 $300^{\circ}C$에서 30분간 실시하고 $N_2+H_2$, $N_2$분위기에서 전 후속 열처리 효과에 따른 정량적인 계면접착에너지를 4점굽힘시험법을 통해 평가하였다. 전 열처리는 100, $200^{\circ}C$$N_2+H_2$ 가스 분위기에서 각각 15분간 처리하였고, 계면접착에너지는 2.58, 2.41, 2.79 $J/m^2$로 전 열처리 전 후에 따른 변화가 없었다. 하지만 250, $300^{\circ}C$$N_2$ 분위기에서 1시간씩 후속 열처리 결과 2.79, 8.87, 12.17 $J/m^2$으로 Cu 접합부의 계면접착에너지가 3배 이상 향상된 결과를 얻을 수 있었다.

Cu-Cu thermo-compression bonding process was successfully developed as functions of the $N_2+H_2$ forming gas annealing conditions before and after bonding step in order to find the low temperature bonding conditions of 3-D integrated technology where the quantitative interfacial adhesion energy was measured by 4-point bending test. While the pre-annealing with $N_2+H_2$ gas below $200^{\circ}C$ is not effective to improve the interfacial adhesion energy at bonding temperature of $300^{\circ}C$, the interfacial adhesion energy increased over 3 times due to post-annealing over $250^{\circ}C$ after bonding at $300^{\circ}C$, which is ascribed to the effective removal of native surface oxide after post-annealing treatment.

키워드

참고문헌

  1. G. T. Lim, B. J. Kim, K. W. Lee, M. J. Lee, Y. C. Joo and Y. B. Park, "Studt on the intermetallic compound growth and interfacial adhesion energy of Cu pillar bump", J. Microelec-tron. Packag. Soc, 15(4), 17 (2008).
  2. E. J. Jang, S. Pfeiffer, B. Kim, T. Matthias, S. Hyun, H. J. Lee and Y. B. Park, "Effect of post-annealing conditions on interfacial adhesion energy of Cu-Cu bonding for 3-D IC integration", Kor. J. Mater. Res., 18(4), 204 (2008). https://doi.org/10.3740/MRSK.2008.18.4.204
  3. S. W. Seo and G S. Kim, "The film property and deposition process of TSV inside for 3D interconnection", J. Microelec-tron. Packag. Soc., 15(3), 47 (2008).
  4. H. Tilmans, D. Van de Peer, and E. Beyne, "The intend reflow sealing technique, a method for fabrication of sealed cavities for MEMS devices", J. Microelectromech. Syst., 9, 206 (2000). https://doi.org/10.1109/84.846701
  5. J.-Q. Lu, Y. Kwon, R. P. Kraft, R. J. Gutman, J. F. McDonald, and T. S. Cale, "Stacked Chip-to-Chip interconnections using wafer bonding technology with eielectric bonding glues", Proceedings of the IEEE International Interconnect Technology Conference, 219 (2001).
  6. R. Tadepalli, Ph. D. Thesis, "Characterization and requirements for Cu-Cu bonds for three-dimensional integrated circuits", Massachusetts Institute of Technology (2007).
  7. M. S. Yoon, M. K. Ko, O. H. Kim, Y. B Park, W. D. Nix and Y. Chang. Joo, "In-Situ observation of electromigration in eutectic SnPb solder lines : atomic migration and hillock formation", J. Electron. Mat, 37, 118 (2007). https://doi.org/10.1007/s11664-007-0301-7
  8. R. Tadepalli, K. T. Turner, C. V. Thompson, "Mixed-mode interface toughness of wafer-level Cu-Cu bonds using a symmetric chevron test", J. Mech. Phys. Solids, 56, 707 (2008). https://doi.org/10.1016/j.jmps.2007.07.016
  9. K. N. Chen, C. S. Tan, A. Fan and R. Reif, "Copper bonded layers analysis and effects of copper surface conditions on bonding quality for three-dimensional integration", J. Electron. Mat., 34, 1464 (2005). https://doi.org/10.1007/s11664-005-0151-0
  10. K. N. Chen, S. M. Chang, L. C. Shen, and R. Reif, "Bonding parameters of blanket copper wafer bonding", J. Electron. Mat., 35, 1082 (2006). https://doi.org/10.1007/BF02692570
  11. H. Zhenyu, Z. Suo, X. Guanghai, H. Jun, J. H. Prevost and N. Sukumar, "Initiation and arrest of an interfacial crack in a four-point bednd test", Eng. Fracture Mech, 72, 2584 (2005). https://doi.org/10.1016/j.engfracmech.2005.04.002
  12. R. H. Dauskardt, M. Lane, Q. Ma and N. Krishna, "Adhesion and debonding of multi-layer thin film structures", Eng Fract Mech, 61, 141 (1998). https://doi.org/10.1016/S0013-7944(98)00052-6
  13. P. G. Charalambides, J. Lund, A. G. Evans and R. M. McMeeking, "A test specimen for determining the fracture resistance of bimaterial interfaces", J. Appl. Mech, 111, 77 (1989).
  14. K. N. Chen, A. Fan, C. S. Tan and R. Reif, "Temperature and duration effects on microstructure evolution during copper wafer bonding", J. Electron. Mat, 32, 1371(2003). https://doi.org/10.1007/s11664-003-0103-5