Abstract
Healthcare is a field where ubiquitous computing is most widely used. We propose a mining-based healthcare multi-agent system for ubiquitous computing environments. This proposed scheme select diagnosis patterns using mining in the real-time biosignal data obtained from a patient's body. In addition, we classify them into normal, emergency and be ready for an emergency. This proposed scheme can deal with the enormous quantity of real-time sensing data and performs analysis and comparison between the data of patient's history and the real-time sensory data. We separate Association rule exploration into two data groups: one is the existing enormous quantity of medical history data. The other group is real-time sensory data which is collected from sensors measuring body temperature, blood pressure, pulse. Proposed system has advantage that can handle urgent situation in the far away area from hospital through PDA and mobile device. In addition, by monitoring condition of patient in a real time base, it shortens time and expense and supports medical service efficiently.
유비쿼터스 컴퓨팅 환경에서 가장 널리 사용 가능한 분야는 헬스케어 분야이다. 본 논문에서는 유비쿼터스 환경에서 마이닝 기반 멀티 에이전트 헬스케어 시스템을 제안한다. 제안하는 기법은 환자의 몸으로부터 생성된 센싱 데이터를 마이닝을 이용하여 진단 패턴을 뽑아내어 정상 상태, 긴급 상태, 응급 상황으로 분류할 수 있다. 이는 실시간으로 센싱되는 엄청난 양의 생체 데이터를 처리할 수 있으며, 환자의 병력 데이터와 비교, 분석한다. 이를 위해 연관 규칙 탐사를 2가지 데이터 그룹으로 구분하여 적용한다. 첫 번째는, 기존의 방대한 의료 병력 데이터로 두 번째는, 체온, 혈압, 맥박등과 같은 센서로부터 센싱한 환자의 실시간 생체데이터로 분류한다. 제안하는 시스템은 PDA 같은 모바일 디바이스 등을 통하여 병원과 멀리 떨어진 지역에서도 긴급 상황을 판단하여 처리할 수 있다. 또한 환자(노인)의 상태를 실시간으로 모니터링 함으로써 요구되는 시간과 비용을 단축하게 되고, 의료 서비스의 지원에 대한 효율성을 높이게 된다.