DOI QR코드

DOI QR Code

Performance Analysis of Refrigeration Cycle of Hydrocarbon Refrigerant using Suction-Line Heat Exchanger

흡입관 열교환기를 이용한 탄화수소계 냉매용 냉동사이클의 성능 분석

  • Ku, Hak-Keun (Department of Refrigeration and Air-Conditioning Eng., TongMyong University)
  • 구학근 (동명대학교 냉동공조공학과)
  • Published : 2009.09.30

Abstract

This paper considers the influence of suction-line heat exchangers on the efficiency of a refrigeration cycle using hydrocarbon refrigerants such as R290, R600a and R1270. These suction-line heat exchangers can, in some cases, yield improved system performance while in other cases they degrade system performance. A steady state mathematical model is used to analyze the performance characteristics of refrigeration cycle with suction-line heat exchanger. The influence of operating conditions, such as the mass flowrate of hydrocarbon refrigerants, inner diameter tube and length of suction-line heat exchanger, to the performance of the cycle is also analyzed in the paper. Results showed that the mass flowrate of hydrocarbon refrigerants, inner diameter tube and length of suction-line heat exchanger, and effectiveness have an effect on the cooling capacity, compressor work and RCI(Relative Capacity Index) of this system. With a thorough grasp of these effect, it is necessary to design the compression refrigeration cycle of hydrocarbon refrigerants using suction-line heat exchanger.

본 논문은 R290, R600a, R1270과 같은 탄화수소계 냉매를 사용하는 냉동사이클의 효율에 대한 흡입관 열교환기의 영향을 고려하였다. 이러한 흡입관 열교환기는 냉동시스템의 성능을 향상시킬 수도 있지만, 성능을 저하시킬 수도 있다. 본 논문에서는 흡입관 열교환기를 가진 냉동사이클의 성능 특성을 파악하기 위해서 정상상태의 수학적 모델을 사용하였다. 그리고 탄화수소계 냉매유량, 흡입관 열교환기의 내관 직경, 길이, 유용도 등과 같은 운전조건의 영향을 분석하였다. 연구결과는 흡입관 열교환기의 내관 직경, 길이, 유용도, 탄화수소계 냉매의 질량유량은 냉동사이클의 상대냉동능력지수, 냉동능력, 압축일량에 영향을 미치는 것을 알 수 있었다. 따라서 이러한 영향을 상세히 파악하여, 흡입관 열교환기를 설치한 탄화수소계 냉매용 증기압축식 냉동사이클을 설계할 필요가 있다.

Keywords

References

  1. M. Y. Wen and C. Y. Ho, Evaporation heat transfer and pressure drop characteristics of R-290(propane), R-600(butane), and a mixture of R-290/R-600 in the three-lines serpentine small-tube bank, Applied Thermal Engineering, Vol. 25, pp. 921-936, 2005.
  2. R. N. Richardson and J. S. Butterworth, The performance of propane/isobutane mixtures in a vapour-compression refrigeration system, Int. J. Refrigeration, 18(1), pp. 58-62, 1995. https://doi.org/10.1016/0140-7007(94)P3712-A
  3. J. H. Hwang, I. C. Baek, D. S. Jung, Performance of HCFC22 alternatives R1270, R290, R1270/R290, R290/HFC152a, R1270/R290/RE170 refrigerants for air-conditioning and heat pump applications, SAREK, 18(4), pp. 312-319, 2006.
  4. W. F. Stoecker and D. J. Walukas, Conserving energy in domestic refrigerators through the use of refrigerant mixture. ASHRAE Transactions, 87(1), pp. 279-281, 1981.
  5. M. O. McLinden, Optimum refrigerants for non-ideal cycles: an analysis employing corresponding states. In Proceedings ASHRAE-Purdue CFC and IIR-Purdue Refrigeration Conferences, W.Lafayette (IN), pp. 17-20, 1990.
  6. P. A. Domanski and D. A. Didion, Thermodynamic evaluation of R22 alternative refrigerants and refrigerant mixtures. ASHRAE Transactions, 99(2), pp. 636-648, 1993.
  7. P. A. Domanski, D. A. Didion, J. P. Doyle, Evaluation of suction-line/ liquid-line heat exchange in the refrigeration cycle. Rev. Int. Froid, 7(7), pp. 487-493, 1994.
  8. S. A. Klein and F. L. Alvarado, EES-Engineering Equation Solver. 4406 Fox Bluff Rd, Middleton(WI 53562):F-Chart Software, 1998.
  9. H. S. Lee, Performance characteristics of refrigeration system using hydrocarbon refrigerants, Thesis for the Degree of Doctor of Philosophy, 2006.
  10. S. T. Oh, H. S. Lee, S. M. Baek and J. I. Yoon, Performance analysis of refrigeration system using liquid-gas heat exchanger, KSME Annual Autumn Conference, pp. 189-194, 2008

Cited by

  1. Performance Characteristics of Refrigerant R170(Ethane) Refrigeration System Using Liquid-gas Heat Exchanger vol.20, pp.5, 2016, https://doi.org/10.9726/kspse.2016.20.5.078